Free Access
Dairy Sci. Technol.
Volume 90, Number 4, July–August 2010
Special Issue: Selection of papers from the 4th International Dairy Federation Dairy Science and Technology Week,
21-25 April 2009, Rennes, France
Page(s) 399 - 412
Published online 30 March 2010
  1. Bachem C.W., van der Hoeven R.S., de Bruijn S.M., Vreugdenhil D., Zabeau M., Visser R.G., Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development, Plant J. 9 (1996) 745–753. [CrossRef] [PubMed] [Google Scholar]
  2. Bauer D., Muller H., Reich J., Riedel H., Ahrenkiel V., Warthoe P., Strauss M., Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR), Nucleic Acids Res. 21 (1993) 4272–4280. [CrossRef] [PubMed] [Google Scholar]
  3. Birlouez-Aragon I., Sabat P., Gouti N., A new method for discriminating milk heat treatment, Int. Dairy J. 12 (2002) 52–57. [Google Scholar]
  4. Crump D., Chiu S., Trudeau V.L., Kennedy S.W., Fluorescent RNA arbitrarily primed polymerase chain reaction. A new differential display approach to detect contaminant-induced alterations of gene expression in wildlife species, in: Cristofre Martin C. (Ed.), Methods in Molecular Biology: Environmental Genomics, Vol. 410, Humana Press Inc., Totowa, USA, 2008, pp. 15–27. [CrossRef] [Google Scholar]
  5. Enfors S.O., Molin G., Effect of high concentrations of carbon dioxide on growth rate of Pseudomonas fragi, Bacillus cereus and Streptococcus cremoris, J. Appl. Bacteriol. 48 (1980) 409–416. [PubMed] [Google Scholar]
  6. Gill C.O., Tan K.H., Effect of carbon dioxide on growth of Pseudomonas fluorescens, Appl. Environ. Microbiol. 38 (1979) 237–240. [PubMed] [Google Scholar]
  7. Hon S.I., Pyun Y.R., Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment, Int. J. Food Microbiol. 63 (2001) 19–28. [CrossRef] [PubMed] [Google Scholar]
  8. Jones S.W., Cai D., Weislow O.S., Esmaeli-Azad B., Generation of multiple mRNA fingerprints using fluorescence-based differential display and an automated DNA sequencer, Biotechniques 22 (1997) 536–543. [PubMed] [Google Scholar]
  9. King J.S., Mabbitt L.A., Preservation of raw milk by addition of carbon dioxide, J. Dairy Res. 49 (1982) 439–447. [CrossRef] [Google Scholar]
  10. Liang P., Pardee A.B., Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science 257 (1992) 967–971. [CrossRef] [PubMed] [Google Scholar]
  11. Luehrsen K.R., Marr L.L., van der Knaap E., Cumberledge S., Analysis of differential display RT-PCR products using fluorescent primers and GENESCAN software, Biotechniques 22 (1997) 168–174. [PubMed] [Google Scholar]
  12. Ma Y., Barbano D.M., Effect of temperature of CO2 injection on the pH and freezing point of milks and creams, J. Dairy Sci. 86 (2003) 1578–1589. [CrossRef] [PubMed] [Google Scholar]
  13. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V., Polouchine N., Shakhova V., Grigoriev I., Lou Y., Rohksar D., Lucas S., Huang K., Goodstein D.M., Hawkins T., Plengvidhya V., Welker D., Hughes J., Goh Y., Benson A., Baldwin K., Lee J.H., Diaz-Muniz I., Dosti B., Smeianov V., Wechter W., Barabote R., Lorca G., Altermann E., Barrangou R., Ganesan B., Xie Y., Rawsthorne H., Tamir D., Parker C., Breidt F., Broadbent J., Hutkins R., O’Sullivan D., Steele J., Unlu G., Saier M., Klaenhammer T., Richardson P., Kozyavkin S., Weimer B., Mills D., Comparative genomics of the lactic acid bacteria, Proc. Natl. Acad. Sci. USA 103 (2006) 15611–15616. [CrossRef] [Google Scholar]
  14. Martin J.D., Werner B.G., Hotchkiss J.H., Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity, J. Dairy Sci. 86 (2003) 1932–1940. [CrossRef] [PubMed] [Google Scholar]
  15. Meade J.D., Cho Y.J., Fisher J.S., Walden J.C., Guo Z., Liang P., Automation of fluorescent differential display with digital readout, in: Liang P., Meade J.D., Pardee A.B. (Eds.), Methods in Molecular Biology: Differential Display Methods and Protocols, Vol. 317, Humana Press Inc., Totowa, USA, 2006, pp. 23–57. [CrossRef] [Google Scholar]
  16. Meyer D.H., Kunin A.S., Maddalena J., Meyer W.L., Ribonuclease activity and isoenzymes in raw and processed cows’ milk and infant formulas, J. Dairy Res. 70 (1987) 1797–1803. [Google Scholar]
  17. Molin G., Effect of carbon dioxide on growth of Pseudomonas putida ATCC 11172 on asparagine, citrate, glucose, and lactate in batch and continuous culture, Can. J. Microbiol. 31 (1985) 763–766. [CrossRef] [PubMed] [Google Scholar]
  18. Nielsen E.W., Principles of cheese production, in: Hui Y., Meunier-Goddik L., Hansen A., Josephsen J., Nip W.-K., Stanfield P., Toldrá F. (Eds.), Handbook of Food and Beverage Fermentation Technology, Marcel Dekker, New York, USA, 2004, pp. 219–239. [Google Scholar]
  19. Pearce L.E., Activity tests for cheese starter cultures, New Zealand, J. Dairy Technol. 4 (1969) 246–247. [Google Scholar]
  20. Pedersen P.J., Microfiltration for the reduction of bacteria in milk and brine, new applications of membrane processes, Int. Dairy Fed. Special Issue No. 9201 (1992) 33–50. [Google Scholar]
  21. Posati L.P., Orr M.L., Composition of foods: dairy and egg products; raw, processed, prepared, Agriculture Handbook No. 8-1, Agricultural Research Service, USDA, Washington, USA, 1976. [Google Scholar]
  22. Roberts R.F., Torrey G.S., Inhibition of psychrotrophic bacterial growth in refrigerated milk by addition of carbon dioxide, J. Dairy Sci. 71 (1988) 52–60. [CrossRef] [Google Scholar]
  23. Rowe M.T., Effect of carbon dioxide on growth and extracellular enzyme production by Pseudomonas fluorescens B52, Int. J. Food Microbiol. 6 (1988) 51–56. [CrossRef] [PubMed] [Google Scholar]
  24. Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M., Sturn A., Snuffin M., Rezantsev A., Popov D., Ryltsov A., Kostukovich E., Borisovsky I., Liu Z., Vinsavich A., Trush V., Quackenbush J., TM4: a free open-source system for microarray data management and analysis, Biotechniques 34 (2003) 374–378. [PubMed] [Google Scholar]
  25. Scaloni A., Perillo V., Franco P., Fedele E., Froio R., Ferrara L., Bergamo P., Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies, Biochim. Biophys. Acta 1598 (2002) 30–39. [PubMed] [Google Scholar]
  26. Schena M., Shalon D., Davis R.W., Brown P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270 (1995) 467–470. [CrossRef] [PubMed] [Google Scholar]
  27. Sturtevant J., Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology, Clin. Microbiol. Rev. 13 (2000) 408–427. [CrossRef] [PubMed] [Google Scholar]
  28. Walstra P., Wouters J.T.M., Geurts T.J., Dairy Science and Technology, CRC Press, Boca Raton, USA, 2006. [Google Scholar]
  29. Welsh J., Chada K., Dalal S.S., Cheng R., Ralph D., McClelland M., Arbitrarily primed PCR fingerprinting of RNA, Nucleic Acids Res. 20 (1992) 4965–4970. [CrossRef] [PubMed] [Google Scholar]
  30. Welsh J., McClelland M., Fingerprinting genomes using PCR with arbitrary primers, Nucleic Acids Res. 18 (1990) 7213–7218. [CrossRef] [PubMed] [Google Scholar]
  31. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18 (1990) 6531–6535. [CrossRef] [PubMed] [Google Scholar]
  32. Wong K.K., McClelland M., Stress-inducible gene of Salmonella typhimurium identified by arbitrarily primed PCR of RNA, Proc. Natl. Acad. Sci. USA 91 (1994) 639–643. [CrossRef] [Google Scholar]
  33. Xia X., Xie Z., AMADA: analysis of microarray data, Bioinformatics 17 (2001) 569–570. [CrossRef] [PubMed] [Google Scholar]