Free Access

This article has an erratum: []

Dairy Sci. Technol.
Volume 90, Number 4, July–August 2010
Special Issue: Selection of papers from the 4th International Dairy Federation Dairy Science and Technology Week,
21-25 April 2009, Rennes, France
Page(s) 413 - 428
Published online 09 February 2010
  1. Anema S.G., Lloyd R.J., Analysis of whey protein denaturation: a comparative study of alternative methods, Milchwissenschaft 54 (1999) 206–210. [Google Scholar]
  2. Cattaneo S., Masotti F., Pellegrino L., Effects of overprocessing on heat damage of UHT-milk, Eur. Food Res. Technol. 226 (2008) 1099–1106. [CrossRef] [Google Scholar]
  3. Claeys W.L., Smout C., Van Loey A.M., Hendrickx M.E., From time integrator kinetics to time temperature integrator tolerance levels: heat-treated milk, Biotechnol. Prog. 20 (2004) 1–12. [CrossRef] [PubMed] [Google Scholar]
  4. Claeys W.L., Van Loey A.M., Hendrickx M.E., Intrinsic time temperature integrators for heat treatment of milk, Trends Food Sci. Technol. 13 (2002) 293–311. [CrossRef] [Google Scholar]
  5. Claeys W.L., Van Loey A.M., Hendrickx M.E., Kinetics of hydroxymethylfurfural, lactulose and furosine formation in milk with different fat content, J. Dairy Res. 70 (2003) 85–90. [CrossRef] [PubMed] [Google Scholar]
  6. Clawin-Rädecker I., Kiesner C., Martin D., Furosine and ribonucleosides: indicators for the heat treatment of milk, Milchwissenschaft 55 (2000) 679–682. [Google Scholar]
  7. Delgado T., Corzo N., Santa-Amria G., Jimeno M.N., Olano A., Determination of furosine in milk samples by ion-pair reversed-phase liquid chromatography, Chromatographia 33 (1992) 374–376. [Google Scholar]
  8. Delgado-Andrade C., Rufián-Henares J.A., Morales F.J., Lysine availability is diminished in commercial fibre-enriched breakfast cereals, Food Chem. 100 (2007) 725–731. [CrossRef] [Google Scholar]
  9. Dyck B., Neue Marktchancen durch ESL-Technologie, Dt. Molk. Ztg. (dmz) 20 (2004) 22–25. [Google Scholar]
  10. Elliott A.J., Datta N., Amenu B., Deeth H.C., Heat-induced and other chemical changes in commercial UHT milks, J. Dairy Res. 72 (2005) 442–446. [CrossRef] [PubMed] [Google Scholar]
  11. Erbersdobler H.F., Somoza V., Forty years of furosine – forty years of using Maillard reaction products as indicators of the nutritional quality of foods, Mol. Nutr. Food Res. 51 (2007) 423–430. [CrossRef] [PubMed] [Google Scholar]
  12. FIL/IDF, Standard 20-1, Milk – Determination of Nitrogen Content – Part 1: Kjeldahl Method, Int. Dairy Fed., Brussels, Belgium, 2001. [Google Scholar]
  13. FIL/IDF, Standard 193, Milk and Milk Products – Determination of Furosine Content – Ion-pair Reverse-phase High-performance Liquid Chromatography Method, Int. Dairy Fed., Brussels, Belgium, 2004. [Google Scholar]
  14. FIL/IDF, Standard 178, Liquid Milk – Determination of Acid-soluble β-lactoglobulin Content – Reverse-phased HPLC Method, Int. Dairy Fed., Brussels, Belgium, 2005. [Google Scholar]
  15. Gallmann P., Eberhard P., Sieber R., Vor- und Nachteile der ESL (Extended Shelf Life)-Milch, Agrarforschung 8 (2001) 112–117. [Google Scholar]
  16. Guerra-Hernández E., Corzo N., Furosine determination in baby cereals by ion-pair reversed-phase liquid chromatography, Cereal Chem. 73 (1996) 729–731. [Google Scholar]
  17. Havea P., Singh H., Creamer L.K., Characterization of heat induced aggregates of β-lactoglobulin, α-lactalbumin and bovine serum albumin in a whey protein concentrate environment, J. Dairy Res. 68 (2001) 483–497. [CrossRef] [PubMed] [Google Scholar]
  18. Kaufmann V., Kulozik U., Verfahrenskonzepte zur Herstellung von ESL-Milch, Dt. Milchwirtsch. 58 (2007) 268–271. [Google Scholar]
  19. Mayer H.K., Bonaparte C., Newart M., Kneifel W., Authentication of Probiotic Bifidobacteria Using Protein and DNA Fingerprinting Techniques, Bulletin Special Issue – IDF Seminar on Fermented Milk, Special Issue 0301, Int. Dairy Fed., Brussels, Belgium, 2003, pp. 62–84. [Google Scholar]
  20. Mendoza M.R., Olano A., Villamiel M., Chemical indicators of heat treatment in fortified and special milks, J. Agric. Food Chem. 53 (2005) 2995–2999. [CrossRef] [PubMed] [Google Scholar]
  21. Morales F.J., Romero C., Jiménez-Pérez S., Characterization of industrial processed milk by analysis of heat-induced changes, Int. J. Food Sci. Technol. 35 (2000) 193–200. [CrossRef] [Google Scholar]
  22. Pellegrino L., Resmini P., Luf W., Assessment (indices) of heat treatment of milk, in: Fox P.F. (Ed.), Heat-induced Changes in Milk, 2nd edn., IDF Special Issue 9501, Int. Dairy Fed., Brussels, Belgium, 1995, pp. 409–453. [Google Scholar]
  23. Resmini P., Pellegrino L., Battelli G., Accurate quantification of furosine in milk and dairy products by a direct HPLC method, Ital. J. Food Sci. 3 (1990) 173–183. [Google Scholar]
  24. Rysstad G., Kolstad J., Extended shelf life milk – advances in technology, Int. J. Dairy Technol. 59 (2006) 85–96. [CrossRef] [Google Scholar]
  25. Schwermann S., Schwenzow U., Verfahrenskonzepte zur Herstellung von ESL-Milch, Dt. Milchwirt. 59 (2008) 384–391, 428–432, 462–467. [Google Scholar]
  26. Serrano M.A., Castillo G., Muňoz M.M., Hernández A., Influence of hydrolysis, purification, and calibration method on furosine determination using ion-pair reversed-phase high-performance liquid chromatography, J. Chromatogr. Sci. 40 (2002) 87–91. [PubMed] [Google Scholar]
  27. Tokuşoğlu Ö., Akalin A.S., Unal M.K., A rapid high performance liquid chromatographic detection of furosine (ε-N-2-furoylmethyl-L-lysine) in pasteurized and UHT milks, Milchwissenschaft 59 (2004) 502–505. [Google Scholar]