Free Access
Dairy Sci. Technol.
Volume 90, Number 4, July–August 2010
Special Issue: Selection of papers from the 4th International Dairy Federation Dairy Science and Technology Week,
21-25 April 2009, Rennes, France
Page(s) 375 - 398
Published online 30 March 2010
  1. Bertelsen H., Andersen H., Tvede M., Fermentation of D-tagatose by human intestinal bacteria and dairy lactic acid bacteria, Microb. Ecol. Health Dis. 13 (2001) 87–95. [CrossRef] [Google Scholar]
  2. Beuvier E., Buchin S., Raw Milk Cheeses, in: Fox P.F., McSweeney P.L.H., Cogan T.M., Guinee T.P. (Eds.), Cheese: Chemistry, Physics and Microbiology, Vol. 1: General aspects, 3rd edn., Elsevier Ltd, London, UK, 2004, pp. 319–345. [CrossRef] [Google Scholar]
  3. Bonaiti C., Leclercq-Perlat M.-N., Latrille E., Corrieu G., Deacidification by Debaryomyces hansenii of smear soft cheeses ripened under controlled conditions: relative humidity and temperature influences, J. Dairy Sci. 87 (2004) 3976–3988. [CrossRef] [PubMed] [Google Scholar]
  4. Brennan N.M., Ward A.C., Beresford T.P., Fox P.F., Goodfellow M., Cogan T.M., Biodiversity of the bacterial flora on the surface of a smear cheese, Appl. Environ. Microbiol. 68 (2002) 820–830. [CrossRef] [PubMed] [Google Scholar]
  5. Brouillaud-Delattre A., Maire M., Collette C., Mattei C., Lahellec C., Predictive microbiology of dairy products: influence of biological factors affecting growth of Listeria monocytogenes, J. AOAC Int. 80 (1997) 913–919. [PubMed] [Google Scholar]
  6. Callon C., Berdagué J.L., Dufour E., Montel M.C., The effect of raw milk microbial flora on the sensory characteristics of Salers-type cheeses, J. Dairy Sci. 88 (2005) 3840–3850. [CrossRef] [PubMed] [Google Scholar]
  7. Callon C., Duthoit F., Delbès C., Ferrand M., Le Frileux Y., De Crémoux R., Montel M.C., Stability of microbial communities in goat milk during a lactation year: molecular approaches, Syst. Appl. Microbiol. 30 (2007) 547–560. [CrossRef] [PubMed] [Google Scholar]
  8. Carnio M.C., Eppert I., Scherer S., Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their antilisterial potential, Int. J. Food Microbiol. 47 (1999) 89–97. [CrossRef] [PubMed] [Google Scholar]
  9. D’Amico D.J., Druart M.J., Donnelly C.W., Sixty-day aging requirement does not ensure safety of surface-mold-ripened soft cheeses manufactured from raw or pasteurized milk when Listeria monocytogenes is introduced as a postprocessing contaminant, J. Food Prot. 71 (2008) 1563–1571. [PubMed] [Google Scholar]
  10. De Buyser M.L., Dufour B., Maire M., Lafarge V., Implication of milk and milk products in food-borne diseases in France and in different industrialised countries, Int. J. Food Microbiol. 67 (2001) 1–17. [CrossRef] [PubMed] [Google Scholar]
  11. Delbès C., Ali Mandjee L., Montel M.C., Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses, Appl. Environ. Microbiol. 73 (2007) 1882–1891. [CrossRef] [PubMed] [Google Scholar]
  12. El-Baradei G., Delacroix-Buchet A., Ogier J.-C., Biodiversity of bacterial ecosystems in traditional Egyptian domiati cheese, Appl. Environ. Microbiol. 73 (2007) 1248–1255. [CrossRef] [PubMed] [Google Scholar]
  13. Eppert I., Valdes-Stauber N., Gotz H., Busse M., Scherer S., Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese, Appl. Environ. Microbiol. 63 (1997) 4812–4817. [PubMed] [Google Scholar]
  14. Feurer C., Irlinger F., Spinnler H.E., Glaser P., Vallaeys T., Assessment of the rind microbial diversity in a farmhouse-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods, J. Appl. Microbiol. 97 (2004) 546–556. [CrossRef] [PubMed] [Google Scholar]
  15. Gay M., Amgar A., Factors moderating Listeria monocytogenes growth in raw milk and soft cheese made from raw milk, Lait 85 (2005) 153–170. [CrossRef] [EDP Sciences] [Google Scholar]
  16. Goerges S., Aigner U., Silakowski B., Scherer S., Inhibition of Listeria monocytogenes by food-borne yeasts, Appl. Environ. Microbiol. 72 (2006) 313–318. [CrossRef] [PubMed] [Google Scholar]
  17. Guillier L., Stahl V., Hezard B., Notz E., Briandet R., Modelling the competitive growth between Listeria monocytogenes and biofilm microflora of smear cheese wooden shelves, Int. J. Food Microbiol. 128 (2008) 51–57. [CrossRef] [PubMed] [Google Scholar]
  18. Hemme D., Foucaud-Scheunemann C., Leuconostoc, characteristics, use in dairy technology and prospects in functional foods, Int. Dairy J. 14 (2004) 467–494. [CrossRef] [Google Scholar]
  19. Larsen A.G., Knochel S., Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system, J. Appl. Microbiol. 83 (1997) 111–119. [CrossRef] [PubMed] [Google Scholar]
  20. Leclercq-Perlat M.N., Oumer A., Bergère J.L., Spinnler H.E., Corrieu G., Growth of Debaryomyces hansenii on a bacterial surface-ripened soft cheese, J. Dairy Res. 66(1999) 271–281. [CrossRef] [Google Scholar]
  21. Liu S.Q., Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations, Int. J. Food Microbiol. 83 (2003) 115–131. [CrossRef] [PubMed] [Google Scholar]
  22. Loessner M., Guenther S., Steffan S., Scherer S., A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium, Appl. Environ. Microbiol. 69 (2003) 1854–1857. [CrossRef] [PubMed] [Google Scholar]
  23. Mansour S., Beckerich J.M., Bonnarme P., Lactate and amino acid catabolism in the cheese-ripening yeast Yarrowia lipolytica, Appl. Environ. Microbiol. 74 (2008) 6505–6512. [CrossRef] [PubMed] [Google Scholar]
  24. Maoz A., Mayr R., Scherer S., Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia, Appl. Environ. Microbiol. 69 (2003) 4012–4018. [CrossRef] [PubMed] [Google Scholar]
  25. Millet L., Saubusse M., Didienne R., Tessier L., Montel M.C., Control of Listeria monocytogenes in raw-milk cheeses, Int. J. Food Microbiol. 108 (2006) 105–114. [CrossRef] [PubMed] [Google Scholar]
  26. Ostling C.E., Lindgren S.E., Inhibition of enterobacteria and listeria growth by lactic, acetic and formic acids, J. Appl. Bacteriol. 75 (1993) 18–24. [PubMed] [Google Scholar]
  27. Sarantinopoulos P., Kalantzopoulos G., Tsakalidou E., Citrate metabolism by Enterococcus faecalis FAIR-E 229, Appl. Environ. Microbiol. 67 (2001) 5482–5487. [CrossRef] [PubMed] [Google Scholar]
  28. Saubusse M., Millet L., Delbès C., Callon C., Montel M.C., Application of single strand conformation polymorphism – PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes, Int. J. Food Microbiol. 116 (2007) 126–135. [CrossRef] [PubMed] [Google Scholar]
  29. Teixeira de Carvalho A.A., Aparecida de Paula R., Mantovani H.C., Alencar de Moraes C., Inhibition of Listeria monocytogenes by a lactic acid bacterium isolated from Italian salami, Food Microbiol. 23 (2006) 213–219. [CrossRef] [PubMed] [Google Scholar]
  30. Valdes-Stauber N., Gotz H., Busse M., Antagonistic effect of coryneform bacteria from red smear cheese against listeria species, Int. J. Food Microbiol. 13 (1991) 119–130. [CrossRef] [PubMed] [Google Scholar]