Free Access
Dairy Sci. Technol.
Volume 90, Number 4, July–August 2010
Special Issue: Selection of papers from the 4th International Dairy Federation Dairy Science and Technology Week,
21-25 April 2009, Rennes, France
Page(s) 449 - 460
Published online 28 May 2010
  1. Astaire J.C., Ward R., German J.B., Jiménez-Flores R., Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction, J. Dairy Sci. 86 (2003) 2297–2307. [CrossRef] [PubMed]
  2. Corredig M., Dalgleish D.G., Effect of heating of cream on the properties of milk fat globule membrane isolates, J. Agric. Food Chem. 46 (1998) 2533–2540. [CrossRef]
  3. Corredig M., Dalgleish D.G., The mechanisms of the heat-induced interaction of whey proteins with casein micelles in milk, Int. Dairy J. 9 (1999) 233–236. [CrossRef]
  4. Dewettinck K., Rombaut R., Thienpont N., Le T.T., Messens K., Camp J.V., Nutritional and technological aspects of milk fat globule membrane material, Int. Dairy J. 18 (2008) 436–457. [CrossRef]
  5. Donato L., Guyomarc’h F., Formation and properties of the whey protein/κ-casein complexes in heated skim milk – A review, Dairy Sci. Technol. 89 (2009) 3–29. [CrossRef] [EDP Sciences]
  6. Eckhardt E.R.M., Wang D.Q.-H., Donovan J.M., Carey M.C., Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers, Gastroenterology 122 (2002) 948–956. [CrossRef] [PubMed]
  7. Evers J.M., The milk fat globule membrane – compositional and structural changes post secretion by the mammary secretory cell, Int. Dairy J. 14 (2004) 661–674. [CrossRef]
  8. Gassi J.-Y., Famelart M.-H., Lopez C., Heat treatment of cream affects the physicochemical properties of sweet buttermilk, Dairy Sci. Technol. 88 (2008) 369–385. [CrossRef] [EDP Sciences]
  9. IDF, Milk and Milk Products – Determination of Nitrogen Content-Routine Method Using Combustion According to the Dumas Principle, Standard 185, Int. Dairy Fed., Brussels, Belgium, 2002.
  10. IDF, Skim Milk, Whey and Buttermilk – Determination of Fat Content-Gravimetric Method (Reference Method), Standard 22, Int. Dairy Fed., Brussels, Belgium, 2008.
  11. Ikeda I., Tanaka K., Vahouny G.V., Gallo L.L., Inhibition of cholesterol absorption in rats by plant sterols, J. Lipid Res. 29 (1988) 1573–1582. [PubMed]
  12. Kobayashi T., Shimizugawa T., Osakabe T., Watanabe S., Okuyama H., A long-term feeding of sphingolipids affected the levels of plasma cholesterol and hepatic triacylglycerol but not tissue phospholipids and sphingolipids, Nutr. Res. 17 (1997) 111–114. [CrossRef]
  13. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685. [CrossRef] [PubMed]
  14. Mather I.H., A review and proposed nomenclature for major proteins of milk-fat globule membrane, J. Dairy Sci. 83 (2000) 203–247. [CrossRef] [PubMed]
  15. McPherson A.V., Kitchen B.J., Reviews of the progress of dairy science: the bovine milk fat globule membrane – its formation, composition, structure and behaviour in milk and dairy products, J. Dairy Res. 50 (1983) 107–133. [CrossRef]
  16. Minekus M., Marteau P., Havenaar R., Huis In’t Veld J.H.J., A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine, Altern. Lab. Anim. 23 (1995) 197–209.
  17. Morin P., Jiménez-Flores R., Pouliot Y., Effect of temperature and pore size on fractionation of fresh and reconstituted buttermilk by microfiltration, J. Dairy Sci. 87 (2004) 267–273. [CrossRef] [PubMed]
  18. Morin P., Jiménez-Flores R., Pouliot Y., Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes, Int. Dairy J. 17 (2007) 1179–1187. [CrossRef]
  19. Nagaoka S., Futamura Y., Miwa K., Awano T., Yamauchi K., Kanamaru Y., Tadashi K., Kuwata T., Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin, Biochem. Biophys. Res. Commun. 281 (2001) 11–17. [CrossRef] [PubMed]
  20. Noh S.K., Koo S.I., Egg sphingomyelin lowers the lymphatic absorption of cholesterol and alpha-tocopherol in rats, J. Nutr. 133 (2003) 3571–3576. [PubMed]
  21. Noh S.K., Koo S.I., Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats, J. Nutr. 134 (2004) 2611–2616. [PubMed]
  22. Rombaut R., Camp J.V., Dewettinck K., Analysis of phospho- and sphingolipids in dairy products by a new HPLC method, J. Dairy Sci. 88 (2005) 482–488. [CrossRef] [PubMed]
  23. Rombaut R., Dewettinck K., Properties, analysis and purification of milk polar lipids, Int. Dairy J. 16 (2006) 1362–1373. [CrossRef]
  24. Singh H., The milk fat globule membrane – a biophysical system for food applications, Curr. Opin. Colloid Interface Sci. 11 (2006) 154–163. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  25. Sodini I., Morin P., Olabi A., Jiménez-Flores R., Compositional and functional properties of buttermilk: a comparison between sweet, sour, and whey buttermilk, J. Dairy Sci. 89 (2006) 525–536. [CrossRef] [PubMed]
  26. Spitsberg V.L., Invited review: bovine milk fat globule membrane as a potential nutraceutical, J. Dairy Sci. 88 (2005) 2289–2294. [CrossRef] [PubMed]
  27. Ward R.E., German J.B., Corredig M., Composition, applications, fractionation, technological and nutritional significance of milk fat globule membrane material, in: Fox P.F., Mcsweeney P.L.H. (Eds.), Advanced Dairy Chemistry, Volume 2: Lipids, Springer, New York, USA, 2006.
  28. Ye A., Singh H., Taylor M.W., Anema S., Characterization of protein components of natural and heat-treated milk fat globule membrane, Int. Dairy J. 12 (2002) 393–402. [CrossRef]
  29. Ye A., Singh H., Taylor M.W., Anema S., Interactions of whey proteins with milk fat globule membrane proteins during heat treatment of whole milk, Lait 84 (2004) 269–283. [CrossRef] [EDP Sciences]
  30. Zlatkis A., Zak B., Study of a new cholesterol reagent, Anal. Biochem. 29 (1969) 143–148. [CrossRef] [PubMed]