Free Access
Dairy Sci. Technol.
Volume 90, Number 2-3, March–June 2010
Special Issue: Selected papers from 4th International Symposium on Spray Dried Dairy Products,
15-17th April 2009, Melbourne, Australia
Page(s) 211 - 224
Published online 26 April 2010
  1. Bhandari B., Howes T., Relating the stickiness property of foods undergoing drying and dried products to their surface energetic, Drying Technol. 23 (2005) 791–797. [Google Scholar]
  2. Blei S., Sommerfeld M., Computation of agglomeration for non-uniform dispersed phase properties – an extended stochastic collision model, in: Proceedings of the 5th International Conference on Multiphase Flow, 30 May–4 June 2004, ICMF’04, Yokohama, Japan. [Google Scholar]
  3. Caric M., Concentrated and Dried Dairy Products, VCH Publishers, New York, USA, 1994. [Google Scholar]
  4. Chen X.D., Whole milk powder agglomeration – principle and practice, in: Chen X.D. (Ed.), Milk Powders for the Future, Dunmore Press, Palmerston North, New Zealand, 1992. [Google Scholar]
  5. Chen X.D., Lake R., Jebson S., Study of milk powder deposition on a large industrial dryer, Trans. IChemE: Bio-Process. Food Process. 71 (1993) 180–186. [Google Scholar]
  6. Crowe C.T., Sharma M.P., Stock D.E., The particle-source-in-cell (PSI-Cell) model for gas-droplet flows, J. Fluid Eng. 9 (1977) 325–332. [Google Scholar]
  7. Ducept F., Sionneau M., Vasseur J., Superheated steam dryer: simulations and experiments on product drying, Chem. Eng. J. 86 (2002) 75–83. [CrossRef] [Google Scholar]
  8. Filkova I., Huang L.X., Mujumdar A.S., Industrial spray drying systems, in: Mujumdar A.S.(Ed.), Handbook of Industrial Drying, Taylor & Francis, New York, USA, 2007, pp. 215–257. [Google Scholar]
  9. Frydman A., Vasseur J., Ducept F., Moureh J., Simulation of spray drying in superheated steam using computational fluid dynamics, Drying Technol. 17 (1999) 1313–1326. [CrossRef] [Google Scholar]
  10. Goldberg J.E., Prediction of Spray Dryer Performance, Ph.D. Thesis, University of Oxford, UK, 1987. [Google Scholar]
  11. Guo B., Langrish T.A.G., Fletcher D.F., Time-dependent simulation of turbulent flows in axisymmetric sudden expansions, in: Thompson M.C., Hourigan K.(Eds.), Proceedings 13th Australasian Fluid Mechanics Conference, Melbourne, Australia, 1998, pp. 283–286. [Google Scholar]
  12. Guo B., Langrish T.A.G., Fletcher D.F., Numerical simulation of unsteady turbulent flow in axisymmetric sudden expansions, J. Fluids Eng. 123 (2001) 574–587. [CrossRef] [Google Scholar]
  13. Guo B., Langrish T.A.G., Fletcher D.F., Simulation of turbulent swirl flow in an axisymetric sudden expansion, AIAA J. 39 (2001) 96–102. [CrossRef] [Google Scholar]
  14. Guo B., Langrish T.A.G., Fletcher D.F., CFD simulation of precession in sudden pipe expansion flows with low inlet swirl, Appl. Math. Model. 26 (2002) 1–15. [CrossRef] [Google Scholar]
  15. Guo B., Langrish T.A.G., Fletcher D.F., Simulation of gas flow instability in a spray dryer, Chem. Eng. Res. Des. 81 (2003) 631–638. [CrossRef] [Google Scholar]
  16. Harvie D.J.E., Langrish T.A.G., Fletcher D.F., A computational fluid dynamics study of a tall-form spray dryer, Trans. IChemE 80 (2002) 163–175. [Google Scholar]
  17. Huang L.X., Kumar K., Mujumdar A.S., Use of computational fluid dynamics to evaluate alternative spray dryer chamber configurations, Drying Technol. 21 (2003) 385–412. [CrossRef] [Google Scholar]
  18. Huang L.X., Mujumdar A.S., Spray drying: principle and practice, in: Mujumdar A.S.(Ed.)Guide to Industrial Drying, 2nd enhanced edn., Colour Publications Pvt. Ltd., Mumbai, India, 2004, pp. 143–169. [Google Scholar]
  19. Huang L.X., Mujumdar A.S., Development of a new innovative conceptual design for horizontal spray dryer via mathematical modeling, Drying Technol. 23 (2005) 1169–1187. [CrossRef] [Google Scholar]
  20. Huang L.X., Mujumdar A.S., Numerical study of two-stage horizontal spray dryers using computational fluid dynamics, Drying Technol. 24 (2006) 727–733. [CrossRef] [Google Scholar]
  21. Huang L.X., Mujumdar A.S., Simulation of an industrial spray dryer and prediction of off-design performance, Drying Technol. 25 (2007) 703–714. [CrossRef] [Google Scholar]
  22. Huang L.X., Passos M.L., Kumar K., Mujumdar A.S., A three-dimensional simulation of a spray dryer fitted with a rotary atomizer, Drying Technol. 23 (2005) 1859–1873. [CrossRef] [Google Scholar]
  23. Huang L.X., Wang Z., Tang J., Recent progress of spray drying in China [in Chinese], Chem. Eng. (China) 29 (2001) 51–55. [Google Scholar]
  24. Huang L.X., Zheng W.H., Wang C.Z., Mujumdar A.S., Leuenberger H., Spray freeze drying and its applications in drying of plant extracts and pharmaceuticals [in Chinese], Chem. Ind. For. Prod. 27 (2007) 143–146. [Google Scholar]
  25. Jin Y., Chen X.D., A three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production, Drying Technol. 27 (2009) 1018–1027. [CrossRef] [Google Scholar]
  26. Jin Y., Chen X.D., Numerical study of the drying process of different sized particles in an industrial-scale spray dryer, Drying Technol. 27 (2009) 371–381. [CrossRef] [Google Scholar]
  27. Jin Y., Chen X.D., A numerical model for the particle deposition on industrial milk dryers, Drying Technol. (to appear). [Google Scholar]
  28. Katta S., Gauvin W.H., Some fundamental aspects of spray drying, AIChE J. 21 (1975) 143–150. [CrossRef] [Google Scholar]
  29. Kieviet F.G., Modelling Quality in Spray Drying, Ph.D. Thesis, Endinhoven University of Technology, The Netherlands, 1997. [Google Scholar]
  30. Kota K., Langrish T.A.G., Fluxes and patterns of wall deposits for skim milk in a pilot-scale spray dryer, Drying Technol. 24 (2006) 993–1001. [CrossRef] [Google Scholar]
  31. Kota K., Langrish T.A.G., Prediction of deposition patterns in a pilot-scale spray dryer using computational fluid dynamics (CFD) simulations, Chem. Prod. Process Model. 2 (2007) Article 26. [Google Scholar]
  32. Langrish T.A.G., Oakley D.E., Keey R.B., Bahu R.E., Hutchinson C.A., Time-dependent flow patterns in spray dryers, Trans. IChemE 71 (1993) 355–360. [Google Scholar]
  33. Langrish T.A.G., Williams J., Fletcher D.F., Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer, Chem. Eng. Res. Des. 82 (2004) 821–833. [CrossRef] [Google Scholar]
  34. Langrish T.A.G., Zbicinski I., The effects of air inlet geometry and spray angle on the wall deposition rate in spray dryers, Trans. IChemE 72 (1994) 420–430. [Google Scholar]
  35. Leuenberger H., Plitzko M., Puchkov M., Spray freeze drying in a fluidized bed at normal and low pressure, Drying Technol. 24 (2006) 711–719. [CrossRef] [Google Scholar]
  36. Masters K., Spray Drying Handbook, 5th edn., John Wiley & Sons Inc., New York, USA, 1991, pp. 725–726. [Google Scholar]
  37. Maurel A., Ern P., Zielinska B.J.A., Wesfreid J.E., Experimental study of self-sustained oscillations in a confined jet, Phys. Rev. E 54 (1996) 3643–3651. [Google Scholar]
  38. Mezhericher M., Levy A., Borde I., Droplet-droplet interactions in spray drying by using 2D Computational Fluid Dynamics, Drying Technol. 26 (2008) 265–282. [CrossRef] [Google Scholar]
  39. Mezhericher M., Levy A., Borde I., Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics, Drying Technol. 27 (2009) 359–370. [CrossRef] [Google Scholar]
  40. Murthi R.A., Paterson A.H.J., Pearce D., Bronlund J.E., Controlling SMP stickiness by changing the wall material: feasible or not?, in: Proceedings of Chemeca, Auckland, New Zealand, 2006, CD-ROM, paper 209. [Google Scholar]
  41. Nhumaio G.C.S., Watkins A.P., Yule A.J., Experiments and CFD predictions of two overlapping water sprays issued from air-assist atomizers, in: Proceedings ILASS Europe 19th Annual Conference on Liquid Atomization and Spray Systems, 6–8 September 2004, Nottingham, UK, 2004. [Google Scholar]
  42. O’Callaghan J., Cunningham P., Modern process control techniques in the production of dried milk – a review, Lait 85 (2005) 335–342. [CrossRef] [EDP Sciences] [Google Scholar]
  43. Oakley D.E., Bahu R.E., Spray/gas mixing behavior within spray dryers, in: Mujumdar A.S., Filkova I.(Eds.), Drying’91, Elsevier, Amsterdam, The Netherlands, 1991. [Google Scholar]
  44. Parti M., Palancz B., Mathematical model for spray drying, Chem. Eng. Sci. 29 (1974) 355–362. [CrossRef] [Google Scholar]
  45. Passos M.L., Mujumdar A.S., Mathematical models for improving spray drying processes for foods, Stewart Post-harvest Review,, 2005. [Google Scholar]
  46. Pisecky J., Evaporation and spray drying in the dairy industry, in: Mujumdar A.S. (Ed.), Handbook of Industrial Drying, Vol. 1, 2nd edn., Marcel Dekker Inc., New York, USA, 1995, pp. 715–742. [Google Scholar]
  47. Rogers S., Wu D., Saunders J., Chen X.D., Characteristics of milk powders produced by spray freeze drying, Drying Technol. 26 (2008) 404–412. [Google Scholar]
  48. Sommerfeld M., Validation of a stochastic Lagrangian modeling approach for inter-particle collisions in homogeneous isotropic turbulence, Int. J. Multiphase Flow 27 (2001) 1829–1858. [CrossRef] [Google Scholar]
  49. Sonner C., Protein-Loaded Powders by Spray Freeze Drying, Ph.D. Thesis, Department of Pharmaceutics, Friedrich-Alexandar University, Erlangen, Germany, 2002. [Google Scholar]
  50. Southwell D.B., Langrish T.A.G., Observations of flow patterns in a spray dryer, Drying Technol. 18 (2000) 661–685. [CrossRef] [Google Scholar]
  51. Straatsma J., van Houwelingen G., Meulman A.P., Steenbergen A.E., DrySPEC2: a computer model of a two-stage dryer, J. Soc. Dairy Technol. 44 (1991) 107–111. [CrossRef] [Google Scholar]
  52. Straatsma J., van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 1. Simulation model, J. Food Eng. 42 (1999) 67–72. [CrossRef] [Google Scholar]
  53. Straatsma J., van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 2. Prediction of insolubility, J. Food Eng. 42 (1999) 73–77. [CrossRef] [Google Scholar]
  54. Tang J.X., Huang L.X., Wang Z.L., Three-stage drying system and its application in dairy product processing [in Chinese], J. Nanjing Forestry 21 (1997) 56–58. [Google Scholar]
  55. Thompson R.I., Nutrient Profile, Functional Properties and Microstructure of Dried Waste Milk Product for Use as a Potential Animal Feed, Ph.D. Thesis, Louisiana State University, USA, 2002. [Google Scholar]
  56. Ullum T., Simulation of a spray dryer with rotary atomizer: the appearance of vortex breakdown, in: Proceedings of the 15th International Drying Symposium, 20–23 August 2006, Budapest, Hungary, pp. 251–257. [Google Scholar]
  57. Verdurmen R.E.M., Menn P., Ritzert J., Blei S., Nhumaio G.C.S., Sonne Sørensen T., Gunsing M., Straatsma J., Verschueren M., Sibeijn M., Schulte G., Fritsching U., Bauckhage K., Tropea C., Sommerfeld M., Watkins A.P., Yule A.J., Schønfeldt H., Simulation of agglomeration in spray drying installations: the EDECAD project, Drying Technol. 22 (2004) 1403–1462. [CrossRef] [Google Scholar]
  58. Verdurmen R.E.M., Straatsma H., Verschueren M., van Haren J.J., Smit E., Bargeman G., De Jong P., Modeling spray drying processes for dairy products, Lait 82 (2002) 453–463. [CrossRef] [EDP Sciences] [Google Scholar]
  59. Verdurmen R.E.M., Verschueren M., Gunsing M., Straatsma H., Simulation of agglomeration in spray dryers: the EDECAD project, Lait 85 (2005) 343–351. [CrossRef] [EDP Sciences] [Google Scholar]
  60. Westergaard V., Milk powder technology: evaporation and spray drying, Niro A/S, Søborg, Denmark, 1994, pp. 18–121. [Google Scholar]
  61. Williams A.M., Jones J.R., Paterson A.H.J., Pearce D.L., Effect of fines on agglomeration in spray dryers: an experimental study, Int. J. Food Eng. (2009) DOI: 10.2202/1556-3758.1635. [Google Scholar]
  62. Woo M.W., The simulation of spray drying under unsteady flow using CFD, 2008, private communications. [Google Scholar]
  63. Woo M.W., Daud W.R.W., Tasirin S.M., Talib M.Z.M., Controlling food powder deposition in spray dryers: wall surface energy manipulation as an alternative, J. Food Eng. 94 (2008) 192–198. [CrossRef] [Google Scholar]
  64. Woo M.W., Daud W.R.W., Tasirin S.M., Talib M.Z.M., Effect of wall surface properties at different drying kinetics on the deposition problem in spray drying, Drying Technol. 26 (2008) 15–26. [CrossRef] [Google Scholar]
  65. Wu Z.H., Liu X.D., Simulation of spray drying of a solution atomized in a pulsating flow, Drying Technol. 20 (2002) 1101–1121. [CrossRef] [Google Scholar]
  66. Xiao Z.F., Xie X.Y., Yuan Y.J., Liu X.D., Influence of atomizing parameters on droplet properties in a pulse combustion spray dryer, Drying Technol. 26 (2008) 427–432. [CrossRef] [Google Scholar]
  67. Xu P., Ray M.B., Mujumdar A.S., Yu B., Design and optimize hydrocyclones with CFD model, in: Proceedings of 8th World Congress of Chemical Engineering, 23–27 August 2009, Montreal, Canada (to appear). [Google Scholar]