Free Access
Dairy Sci. Technol.
Volume 90, Number 5, September–October 2010
Page(s) 521 - 535
Published online 19 January 2010
  1. Adler-Nissen J., Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid, J. Agric. Food Chem. 27 (1979) 1256–1261. [CrossRef] [PubMed] [Google Scholar]
  2. Andrews A.T., Alichanidis E., The plastein reaction revisited: evidence for a purely aggregation reaction mechanism, Food Chem. 35 (1990) 243–261. [CrossRef] [Google Scholar]
  3. Bougatef A., Hajji M., Balti R., Lassoued I., Triki-Ellouz Y., Nasri M., Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases, Food Chem. 114 (2009) 1198–1205. [CrossRef] [Google Scholar]
  4. Chang C.Y., Wu K.C., Chiang S.H., Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates, Food Chem. 100 (2007) 1537–1543. [CrossRef] [Google Scholar]
  5. Chiu S.C.K., Kitts D.D., Antioxidant characterization of caseinphosphopeptides from bovine milk, ACS Symposium Series 871 (2004) 279–289. [CrossRef] [Google Scholar]
  6. Chu K.T., Ng T.B., First report of a glutamine-rich antifungal peptide with immunomodulatory and antiproliferative activities from family Amaryllidaceae, Biochem. Biophy. Res. Comm. 325 (2004) 167–173. [CrossRef] [Google Scholar]
  7. Church F.C., Swaisgood H.E., Porter D.H., Catignani G.L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins, J. Dairy Sci. 66 (1983) 1219–1227. [CrossRef] [Google Scholar]
  8. Combes D., Lozano P., α-Chymotrypsin in plastein synthesis. Influence of water activity, Annals of the New York Academy of Sciences 672 (Enzyme Engineering XI), New York, USA, 1993. [Google Scholar]
  9. Fiat A.M., Migliore-Samour D., Jolles P., Drouet L., Sollier C.B.D., Caen J., Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities, J. Dairy Sci. 76 (1993) 301–310. [CrossRef] [PubMed] [Google Scholar]
  10. Gómez-Ruiz J.A., López-Expósito I., Pihlanto A., Ramos M., Recio I., Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC–MS/MS, Eur. Food Res. Technol. 227 (2008) 1061–1067. [CrossRef] [Google Scholar]
  11. Hernández M.J.M., Domingo E.B., Camañas R.M.V., Alvarez-Coque M.C.G., Evaluation of the proteolysis degree with the o-phthalaldehyde/N-acetyl-L-cysteine reagent, Fresenius’ J. Anal. Chem. 338 (1999) 62–65. [Google Scholar]
  12. Hernández-Ledesma B., Quirós A., Amigo L., Recio I., Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin, Int. Dairy J. 17 (2007) 42–49. [CrossRef] [Google Scholar]
  13. IDF, Milk. Determination of the nitrogen (Kjeldahl method) and calculation of the crude protein content, IDF Standard 20B, International Dairy Federation, Brussels, Belgium, 1993. [Google Scholar]
  14. Kim G.N., Jang H.D., Kim C.I., Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using Alcalase, Food Chem. 53 (2007) 1359–1365. [CrossRef] [Google Scholar]
  15. Kitts D.D., Antioxidant properties of casein phosphopeptides, Trends Food Sci. Technol. 16 (2005) 549–556. [Google Scholar]
  16. López-Fandiño R., Otte J., van Camp J., Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity, Int. Dairy J. 16 (2006) 1277–1293. [CrossRef] [Google Scholar]
  17. Mao X.Y., Wu S.J., Fan J.B., Xu S.P., Wang J., Gu J.N., Ren F.Z., Scavenging activity of enzymatic hydrolysate of yak casein on DPPH radical, Modern Food Sci. Technol. 24 (2007) 624–626, 634. [Google Scholar]
  18. Nakajima K., Yoshie-Stark Y., Ogushi M., Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates, Food Chem. 114 (2009) 844–851. [CrossRef] [Google Scholar]
  19. Nsimba R.Y., Kikuzaki H., Konishi Y., Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds, Food Chem. 106 (2008) 760–766. [CrossRef] [Google Scholar]
  20. Ono S., Kasai D., Sugano T., Ohba K., Takahashi K., Production of water soluble antioxidative plastein from squid hepatopancreas, J. Oleo Sci. 53 (2004) 267–273. [Google Scholar]
  21. Peng X.Y., Xiong Y.L., KongB.H., Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance, Food Chem. 113 (2009) 196–201. [CrossRef] [Google Scholar]
  22. Pihlanto L.A., Antioxidative peptides derived from milk proteins, Int. Dairy J. 16 (2006) 1306–1314. [CrossRef] [Google Scholar]
  23. Pihlanto L.A., Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides, Trends Food Sci. Technol. 11 (2001) 347–356. [CrossRef] [Google Scholar]
  24. Re R., Pellegrini N., Proteggente A., Yang M., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Rad. Bio. Med. 26 (1999) 1231–1237. [CrossRef] [Google Scholar]
  25. Rival S.G., Boeriu C.G., Wichers H.J., Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition, J. Agric. Food Chem. 49 (2001) 295–302. [CrossRef] [PubMed] [Google Scholar]
  26. Rival S.G., Fornaroli S., Boeriu C.G., Wichers H.J., Caseins and casein hydrolysates. 1. Lipoxygenase inhibitory properties, J. Agric. Food Chem. 49 (2001) 287–294. [CrossRef] [PubMed] [Google Scholar]
  27. Rossini K., Noreña C.P.Z., Cladera-Olivera F., Brandelli A., Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat, LWT-Food Sci. Technol. 42 (2009) 862–867. [CrossRef] [Google Scholar]
  28. Sakanaka S., Tachibana Y., Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates, Food Chem. 95 (2006) 243–249. [CrossRef] [Google Scholar]
  29. Sarath G., De La Motte R.S., Wagner F.W., Protease assay methods, in: Beynon R.J., Bond J.S. (Eds.), Proteolytic Enzymes, A Practical Approach, IRL Press, Oxford, UK, 1989, pp. 25–55. [Google Scholar]
  30. Suetsuna K., Ukeda H., Ochi H., Isolation and characterization of free radical scavenging activity peptides derived from casein, J. Nutr. Biochem. 11 (2000) 28–131. [Google Scholar]
  31. Sukan G., Andrews A.T., Application of the plastein reaction to caseins and to skim milk powder I. Protein hydrolysis and plastein formation, J. Dairy Res. 49 (1982) 265–278. [CrossRef] [Google Scholar]
  32. Sukan G., Andrews A.T., Application of the plastein reaction to caseins and to skim milk powder II. Chemical and physical properties of the plasteins, J. Dairy Res. 49 (1982) 279–293. [CrossRef] [Google Scholar]
  33. Williams R.J., Brownsell V.L., Andrews A.T., Application of the plastein reaction to mycoprotein: I. Plastein synthesis, Food Chem. 72 (2001) 329–335. [CrossRef] [Google Scholar]
  34. Yamashita M., Arai S., Fujimaki M., Plastein reaction for food protein improvement, J. Agric. Food Chem. 24 (1976) 1100–1104. [CrossRef] [Google Scholar]
  35. Zhao X.H., Li Y.Y., An approach to improve ACE inhibitory activity of casein hydrolysates with plastein reaction catalyzed by Alcalase, Eur. Food Res. Technol. 229 (2009) 795–805. [CrossRef] [Google Scholar]