Free Access

This article has an erratum: [erratum]

Issue
Dairy Sci. Technol.
Volume 89, Number 5, September-October 2009
Page(s) 485 - 499
DOI https://doi.org/10.1051/dst/2009024
Published online 19 August 2009
References of  Dairy Sci. Technol. 89 (2009) 485–499
  1. Allen J.C., Wrieden W.L., Influence of milk proteins on lipid oxidation in aqueous emulsion I, Casein, whey protein and á-lactalbumin, J. Dairy Res. 49 (1982) 239–248.
  2. Avena-Bustillos R.J., Krochta J.M., Water vapor permeability of caseinate-based films as affected by pH, calcium cross linking, and lipid content, J. Food Sci. 58 (1993) 904–907.
  3. Berlett B., Stadtman E.R., Protein oxidation in aging disease and oxidative stress, J. Biol. Chem. 33 (1997) 20313–20316.
  4. Bourgeois C.M., Leveau J.Y., Linden G. Multon J.L., in: Deynier B., Multon J.L., Simon D. (Eds.), Eau (teneur, activité, absorption, propriétés fonctionelles), humidités relatives Techniques d'analyse et de contrôle dans les industries agro-alimentaires, Vol. 4, Tec & Doc Lavoisier, Paris, France, 1991, pp. 31–34.
  5. Bruns M., Hallberg L., Skanberg A., Determination of iron-binding phenolic groups in foods, J. Food Sci. 56 (1991) 128–131.
  6. Chen H., Functional properties and applications of edible films made from milk proteins, J. Dairy Sci. 78 (1995) 2563–2583.
  7. Dalgleish D.G., Milk proteins-chemistry and physics, in: Kinsella J.E., Soucie W.G. (Eds.), Food proteins, American Oil Chemists Society, Champaign, USA, 1989, pp. 155–178.
  8. Dehkharghanian M., Effet de la transition vitreuse sur transfère de l'oxygène dans une enrobages comestible, M.S. Thesis, Laboratoire Physique-chimie et industrie alimentaire, ENSAIA, INPL, Nancy, France, 1998.
  9. Dehkharghanian M., Étude des polyphénols du thé vert et d'épinards en solution et en système encapsulé, Ph.D. Thesis, Université technologie de Compiègne, France, 2004.
  10. Diaz M., Decker E.A., Antioxidant mechanisms of caseinophosphopeptides and casein hydrolysates and their application in ground beef, J. Agric. Food Chem. 52 (2004) 8208–8213.
  11. Diaz M., Dunn C.M., Mcclements D.J., Decker E.A., Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions, J. Agric. Food Chem. 51 (2003) 2365–2370.
  12. Dudley E.D., Hotchkiss J.H., Cysteine as an inhibitor of polyphenol oxidase, J. Food Biochem. 13 (1989) 65–67.
  13. Frinault A., Réalisation de films à vocation d'emballage à partir de caséine texture en milieu acide : Caractéristiques fonctionnelles et potentialités, Doctorat d'état, Université de Nantes, France, 1997, 123 p.
  14. Jackson C.V., Mickelson J.K., Pope T.K., Rao P.S., Lucchesi B.R., Oxygen free radical- mediated myocardial and vascular dysfunction, Am. J. Physiol. 25 (1986) 1225–1231.
  15. Kaneko T., Matsuo M., Baba N., Inhibition of linoleic acid hydroperoxide-induced toxicity in cultured human umbilical vein endothelial cells by catechins, Chem. Biol. Interact. 11 (1998) 109–111.
  16. Kim G.N., Jang H.D., Kim C.I., Antioxidant capacity of caseinophosphopeptides prepared from sodium caseinate using alcalase, Food Chem. 104 (2007) 1359–1365.
  17. Kohen R., Yamamoto Y., Cundy K.C., Ames B.N., Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain, Proc. Natl. Acad. Sci. USA 85 (1988) 3175–3179.
  18. Laakso S., Inhibition of lipid peroxidation by casein. Evidence of molecular encapsulation of 1,4-pentadiene fatty acids, Biochim. Biophys. Acta 792 (1984) 11–15.
  19. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685.
  20. Mchung T.H., Krochta J.M., Milk proteinbased edible film and coating, Food Tech. 48 (1994) 97–103.
  21. Pihlanto A., Review: Antioxidative peptides derived from milk proteins, Int. Dairy J. 16 (2006) 1306–1314.
  22. Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramely P.M., Pridham J.B., The relative antioxidant activities of plant-derived polyphenolic flavonoïdes, Free Radic. Res. 22 (1995) 375–383.
  23. Rice-Evans C.A., Miller N.J., Paganga G., Structure antioxidant activity relationships of flavonoïdes and phenolic acids, Free Radic. Biol. Med. 20 (1996) 933–956.
  24. Rival S.G., Boeriu C.G., Wichers H.J., Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition, J. Agric. Food Chem. 49 (2001) 295–302.
  25. Roedig-Penman A., Gordon M.H., Antioxidant properties of catechins and green tea extracts in model food emulsions, J. Agric. Food Chem. 45 (1997) 4267–4270.
  26. Sakanaka S., Tachibana Y., Ishihara N., Juneja L.R., Antioxidant properties of casein calcium peptides and their effects on lipid oxidation in beef homogenates, J. Agric. Food Chem. 53 (2005) 464–468.
  27. Singh H., Fox P.F., Heat-induced changes in casein, Int. Dairy Fed. Bull. 238 (1989) 24–30.
  28. Southward C.R., Walker N.J., The manufacture and industrial use of casein, N. Z. J. Dairy Sci. Technol. 15 (1980) 201–217.
  29. Taylor M.J., Richardson T., Antioxidant activity of cysteine and protein sulfhydryl in a linoleate emulsion oxidized by hemoglobin, J. Food Sci. 45 (1980) 1223–1228.
  30. Taylor M.J., Richardson T., Antioxidant activity of skim milk: effect of heat and resultant sulfydryl groups, J. Dairy Sci. 63 (1980) 1783–1795.
  31. Tien C.L., Vachon C., Mateescu M.A., Lacroix M., Milk protein coatings prevent oxidative browning of apples and potatoes, J. Food Sci. 66 (2001) 512–516.
  32. Truby M.G., Richardson T., Fennema O., Hematin-catalyzed oxidation of linoleate as influenced by â-casein, Food Chem. 24 (1987) 247–261.
  33. Vinson J.A., Dabbagh Y.A., Tea phenols: antioxidant effectiveness of teas, tea components, tea fractions and their binding with lipoproteins, Nutr. Res. 18 (1998) 1067–1075.
  34. Walstra P., Jenness R., Dairy Chemistry and Physical, John Wiley & Sons, New York, USA, 1984.
  35. Xue C., Yu G., Hirata T., Terao J., Lin H., Antioxidative activities of several marine polysaccharides evaluated in a phosphatidylcholine-liposomal suspension and organic solvent, Biosci. Biotechnol. Biochem. 62 (1988) 206–209.