Free Access
Dairy Sci. Technol.
Volume 90, Number 1, January–February 2010
Page(s) 87 - 98
Published online 17 December 2009
  1. Allen J.C., Wrieden W.L., Influence of milk-proteins on lipid oxidation in aqueous emulsion. 1. Casein, whey-protein and alpha-lactalbumin, J. Dairy Res. 49 (1982) 239–248. [CrossRef]
  2. Carmichael D., Christopher J., Hegenauer J., Saltman P., Effect of milk and casein on absorption of supplemental iron in mouse and chick, Am. J. Clin. Nutr. 28 (1975) 487–493. [PubMed]
  3. Douglas F.W., Rainey N.H., Wong N.P., Edmondson L.F., Lacroix D.E., Color, flavor, and iron bioavailability in iron-fortified chocolate milk, J. Dairy Sci. 64 (1981) 1785–1793. [CrossRef]
  4. Eriksson C.E., Lipid oxidation catalysts and inhibitors in raw-materials and processed foods, Food Chem. 9 (1982) 1–2. [CrossRef]
  5. Gaucheron F., Le Graet Y., Raulot K., Piot M., Physicochemical characterisation of iron-supplemented skim milk, Int. Dairy J. 7 (1997) 141–148. [CrossRef]
  6. Hegenauer J., Saltman P., Ludwig D., Ripley L., Ley A., Iron-supplemented cow milk – identification and spectral properties of iron bound to casein micelles, J. Agric. Food Chem. 27 (1979) 1294–1301. [CrossRef] [PubMed]
  7. Hekmat S., McMahon D.J., Distribution of iron between caseins and whey proteins in acidified milk, Lebensm. Wiss. Technol. 31 (1998) 632–638. [CrossRef]
  8. Hurrell R.F., Cook J.D., Strategies for iron fortification of foods, Trends Food Sci. Technol. 9 (1990) 56–61. [CrossRef]
  9. Inoue T., Ando K., Kikugawa K., Specific determination of malonaldehyde by N-methyl-2-phenylindone or thiobarbituric acid, J. Am. Oil Chem. Soc. 75 (1998) 597–600. [CrossRef]
  10. Labuza T.P., Kinetics of lipid oxidation in foods, CRC Crit. Rev. Food Technol. 2 (1971) 355–404. [CrossRef]
  11. Manson W., Cannon J., Reaction of α-s1 and β-casein with ferrous ions in presence of oxygen, J. Dairy Res. 45 (1978) 59–67. [CrossRef]
  12. McClements D.J., Decker E.A., Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (2000) 1270–1282. [CrossRef]
  13. Mulvihill D.M., Production, functional properties and utilization of milk protein products, in: Fox P.F. (Ed.), Advanced Dairy Chemistry – 1. Proteins, Elsevier Applied Science Publishers, London, UK, 1992, pp. 369–405.
  14. O’Connor T.P., O’Brien N.M., Lipid oxidation, in: Fox P.F. (Ed.), Advanced Dairy Chemistry, Vol. 2, Chapman and Hall, London, UK, 1995, pp. 309–347.
  15. Perrin D., Dempsey B., Buffers for pH and Metal Ion Control, Chapman and Hall, London, UK, 1974.
  16. Richardson T., Korycka-Dahl M., Lipid oxidation, in: Fox P.F. (Ed.), Developments in Dairy Chemistry, Vol. 1, Elsevier Applied Science Publishers, London, UK, 1983, pp. 241–363.
  17. Sugiarto M., Ye A., Singh H., Characterization of binding of iron to sodium caseinate and whey protein isolate, Food Chem. 114 (2009) 1007–1013. [CrossRef]
  18. Taylor M.J., Richardson T., Antioxidant activity of skim milk: effect of heat and resultant sulfhydryl groups, J. Dairy Sci. 63 (1980) 1783–1795. [CrossRef]
  19. Tong L.M., Sasaki S., McClements D.J., Decker E.A., Mechanisms of the antioxidant activity of a high molecular weight fraction of whey, J. Agric. Food Chem. 48 (2000) 1473–1478. [CrossRef] [PubMed]
  20. Ye A., Interfacial composition and stability of emulsions made with mixtures of sodium caseinate and whey protein concentrate, Food Chem. 110 (2008) 946–952. [CrossRef] [PubMed]
  21. Yee J.J., Shipe W.F., Effects of sulfhydryl compounds on lipid oxidations catalyzed by copper and heme, J. Dairy Sci. 65 (1982) 1414–1420. [CrossRef]
  22. Yen G.C., Chen H.Y., Lee C.E., Measurement of antioxidative activity in metal ion-induced lipid peroxidation systems, J. Sci. Food Agric. 79 (1999) 1213–1217. [CrossRef]