Free Access
Dairy Sci. Technol.
Volume 90, Number 6, November–December 2010
Page(s) 729 - 740
Published online 02 August 2010
  1. Baddiley J., Mechanism and control of cell wall synthesis in bacteria, Pure Appl. Chem. 42 (1975) 417–429. [CrossRef] [Google Scholar]
  2. Bolognani F., Rumney C.J., Rowland R., Influence of carcinogen binding by lactic acid producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens, Food Chem. Toxicol. 35 (1997) 535–545. [CrossRef] [PubMed] [Google Scholar]
  3. Chapot B., Wild C.P., ELISA for quantification of aflatoxin-albumin adducts and their application to human exposure assessment, in: Van-Warhol M., Velzen D., Bullock G.R. (Eds.), Techniques in Diagnostic Pathology, Academic Press, New York, USA, 1991, pp. 135–155. [Google Scholar]
  4. Doyle R.J., McDannel M.L., Streips U.N., Birdsell D.C., Young F.E., Polyelectrolyte nature of bacterial teichoic acids, J. Bacteriol. 118 (1974) 606–615. [PubMed] [Google Scholar]
  5. El-Nezami H., Kankaanpää P., Salminen S., Ahokas J., Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1, Food Chem. Toxicol. 36 (1998) 321–326. [CrossRef] [PubMed] [Google Scholar]
  6. El-Nezami H., Kannkaanpää P., Salminen S., Ahokas J., Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media, J. Food Prot. 61 (1998) 466–468. [PubMed] [Google Scholar]
  7. El-Nezami H., Mykkanen H., Kankaanpää P., Salminen S., Ahokas J., Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum, J. Food Prot. 63 (2000) 549–552. [PubMed] [Google Scholar]
  8. Goldman R.D., Antibodies: indispensable tools for biomedical research, Trends Biochem. Sci. 25 (2000) 593–595. [CrossRef] [PubMed] [Google Scholar]
  9. Gratz S., Taubel M., Juvonen R.O., Viluksela M., Turner P.C., Mykkanen H., El-Nezami H., Lactobacillus rhamnosus strain GG modulates intestinal absorption, fecal excretion, and toxicity of aflatoxin B1 in rats, Appl. Environ. Microbiol. 72 (2006) 7398–7400. [CrossRef] [PubMed] [Google Scholar]
  10. Gratz S., Wu Q.K., El-Nezami H., Juvonen R.O., Mykkanen H., Turner P.C., Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells, Appl. Environ. Microbiol. 73 (2007) 3958–3964. [CrossRef] [PubMed] [Google Scholar]
  11. Groopman J.D., Kensler T.W., Wild C.P., Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries, Annu. Rev. Public Health 29 (2008) 187–203. [CrossRef] [PubMed] [Google Scholar]
  12. Guan S., Ji C., Zhou T., Li J., Ma Q., Niu T., Aflatoxin B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium, Int. J. Mol. Sci. 9 (2008) 1489–1503. [CrossRef] [PubMed] [Google Scholar]
  13. Haskard C.A., El-Nezami H.S., Kankaanpää P.E., Salminen S., Ahokas J.T., Surface binding of aflatoxin B1 by lactic acid bacteria, Appl. Environ. Microbiol. 67 (2001) 3086–3091. [CrossRef] [PubMed] [Google Scholar]
  14. Hayes J.D., Chanas S.A., Henderson C.J., McMahon M., Sun C., Moffat G.J., Wolf C.R., Yamamoto M., The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin, Biochem. Soc. Trans. 28 (2000) 33–41. [PubMed] [Google Scholar]
  15. Hernandez-Mendoza A., Garcia H.S., Steele J.L., Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1, Food Chem. Toxicol. 47 (2009) 1064–1068. [CrossRef] [PubMed] [Google Scholar]
  16. Hernandez-Mendoza A., Guzman-de-Pena D., Garcia H.S., Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria, J. Appl. Microbiol. 107 (2009) 395–403. [CrossRef] [PubMed] [Google Scholar]
  17. IACUC, Guideline of Selected Techniques for Rat and Mouse Blood Collection, Guideline 9, USA, 1999. [Google Scholar]
  18. Kandler O., Weiss N., Genus Lactobacillus, in: Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. (Eds.), Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, London, Los Angeles, 1984. [Google Scholar]
  19. Kankaanpää P., Tuomola E., El-Nezami H., Ahokas J., Salminen S.J., Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model, J. Food Prot. 63 (2000) 412–414. [PubMed] [Google Scholar]
  20. Kusser W., Zimmer K., Fiedler F., Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions, Eur. J. Biochem. 151 (1985) 601–605. [CrossRef] [PubMed] [Google Scholar]
  21. Lahtinen S.J., Haskard C.A., Ouwehand A.C., Salminen S.J., Ahokas J.T., Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG, Food Addit. Contam. 21 (2004) 158–164. [CrossRef] [PubMed] [Google Scholar]
  22. Lee Y.K., Ho P.S., Low C.S., Arvilommi H., Salminen S., Permanent colonization by Lactobacillus casei is hindered by the low rate of cell division in mouse gut, Appl. Environ. Microbiol. 70 (2004) 670–674. [CrossRef] [PubMed] [Google Scholar]
  23. Molly K., De Smet I., Nolet L., Vande Woestyne M., Verstraete W., Effect of Lactobacilli on the ecology of the microbiota cultured in the SHIME reactor, Microb. Ecol. Health Dis. 9 (1996) 79–89. [CrossRef] [Google Scholar]
  24. Murugavel K.G., Naranatt P.P., Shankar E.M., Mathews S., Raghuram K., Rajasambandam P., Jayanthi V., Surendran R., Murali A., Srinivas U., Palaniswamy K.R., Srikumari D., Thyagarajan S.P., Prevalence of aflatoxin B1 in liver biopsies of proven hepatocellular carcinoma in India determined by an in-house immunoperoxidase test, J. Med. Microbiol. 56 (2007) 1455–1459. [CrossRef] [PubMed] [Google Scholar]
  25. Navarre W.W., Schneewind O., Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiol. Mol. Biol. Rev. 63 (1999) 174–229. [PubMed] [Google Scholar]
  26. Orrhage K.M., Annas A., Nord C.E., Brittebo E.B., Rafter J.J., Effects of lactic acid bacteria on the uptake and distribution of the food mutagen Trp-P-2 in mice, Scand. J. Gastroenterol. 37 (2002) 215–221. [CrossRef] [PubMed] [Google Scholar]
  27. Park S., Hwang M., Kim Y., Kim J., Song J., Lee K., Jeong K., Rhee M., Kim K., Kim T., Comparison of pH and bile resistance of Lactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources, World J. Microbiol. Biotechnol. 22 (2006) 35–37. [Google Scholar]
  28. Phillips T.D., Dietary clay in the chemoprevention of aflatoxin-induced disease, Toxicol. Sci. 52 (1999) 118–126. [PubMed] [Google Scholar]
  29. Pringle J.R., Preston R.A., Adams A.E., Stearns T., Drubin D.G., Haarer B.K., Jones E.W., Fluorescence microscopy methods for yeast, Methods Cell Biol. 31 (1989) 357–435. [CrossRef] [PubMed] [Google Scholar]
  30. Sara M., Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria?, Trends Microbiol. 9 (2001) 47–49. [CrossRef] [PubMed] [Google Scholar]
  31. Schar-Zammaretti P., Ubbink J., The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations, Biophys J. 85 (2003) 4076–4092. [CrossRef] [PubMed] [Google Scholar]
  32. Shetty P.H., Jespersen L., Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents, Trends Food Sci. Technol. 17 (2006) 48–55. [CrossRef] [Google Scholar]
  33. Strosnider H., Azziz-Baumgartner E., Banziger M., Bhat R.V., Breiman R., Brune M.N., DeCock K., Dilley A., Groopman J., Hell K., Henry S.H., Jeffers D., Jolly C., Jolly P., Kibata G.N., Lewis L., Liu X., Luber G., McCoy L., Mensah P., Miraglia M., Misore A., Njapau H., Ong C.N., Onsongo M.T., Page S.W., Park D., Patel M., Phillips T., Pineiro M., Pronczuk J., Rogers H.S., Rubin C., Sabino M., Schaafsma A., Shephard G., Stroka J., Wild C., Williams J.T., Wilson D., Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries, Environ. Health Perspect. 114 (2006) 1898–1903. [PubMed] [Google Scholar]
  34. Tuohy K.M., Pinart-Gilberga M., Jones M., Hoyles L., McCartney A.L., Gibson G.R., Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora, J. Appl. Microbiol. 102 (2007) 1026–1032. [PubMed] [Google Scholar]
  35. Turbic A., Ahokas T., Haskard C.A., Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria, Food Addit. Contam. 19 (2002) 144–152. [CrossRef] [Google Scholar]
  36. Umeda A., Saito M., Amako K., Surface characteristics of Gram-negative and Gram-positive bacteria in an atomic force microscope image, Microbiol. Immunol. 42 (1998) 159–164. [PubMed] [Google Scholar]
  37. Vinderola C.G., Ballo N., Reinheimer J.A., Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage, Food Res. Int. 33 (2000) 97–102. [CrossRef] [Google Scholar]
  38. Williams J.H., Phillips T.D., Jolly P.E., Stiles J.K., Jolly C.M., Aggarwal D., Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions, Am. J. Clin. Nutr. 80 (2004) 1106–1122. [PubMed] [Google Scholar]
  39. Willingham M.C., Fluorescence labeling of surface antigens of attached or suspended tissue-culture cells, in: Javols L.C. (Ed.), Methods in Molecular Biology, Human Press Inc., Totowa, USA, 1994, pp. 113–119. [Google Scholar]