Free Access
Dairy Sci. Technol.
Volume 90, Number 5, September–October 2010
Page(s) 477 - 508
Published online 30 March 2010
  1. Aguilera J.M., Why food microstructure?, J. Food Eng. 67 (2005) 3–11. [CrossRef] [Google Scholar]
  2. Aldarf M., Fourcade F., Amrane A., Prigent Y., Diffusion of lactate and ammonium in relation to growth of Geotrichum candidum at the surface of solid media, Biotechnol. Bioeng. 87 (2004) 69–80. [CrossRef] [PubMed] [Google Scholar]
  3. Aldarf M., Fourcade F., Amrane A., Prigent Y., Substrate and metabolite diffusion within model medium for soft cheese in relation to growth of Penicillium camembertii, J. Ind. Microbiol. Biotechnol. 33 (2006) 685–692. [CrossRef] [PubMed] [Google Scholar]
  4. Amrane A., Aldarf M., Fourcade F., Prigent Y., Substrate and metabolite diffusion within solid medium in relation to growth of Geotrichum candidum, in: FOODSIM 2006, 4th International Conference Simulation Modelling in the Food and Bio Industry, Naples, Italy, June 15–17, 2006, pp. 179–186. [Google Scholar]
  5. Axelrod D., Koppel D.E., Schlessinger J., Elson E., Webb W., Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16 (1976) 1055–1069. [Google Scholar]
  6. Bailey J.E., Diffusion of grouped multicomponent mixtures in uniform and nonuniform media, Aiche J. 21 (1975) 192–194. [CrossRef] [Google Scholar]
  7. Baroni A.F., Menezes M.R., Adell E.A.A., Ribeiro E.P., Modeling of Prato cheese salting: fickian and neural network approaches, in: Welti-Chanes J., Velez-Ruiz J.F., Barbosa-Canovas G.V. (Eds.), Transport Phenomena in Food Processing, CRC Press, Boca Raton, USA, 2003, pp. 192–212. [Google Scholar]
  8. Bona E., Borsato D., da Silva R.S.S.F., Silva L.H.M., Multicomponent diffusion during simultaneous brining of Prato Brazilian cheese, Cienc. Tecnol. Aliment. 25 (2005) 394–400. [Google Scholar]
  9. Bona E., Carneiro R.L., Borsato D., da Silva R.S.S.F., Fidelis D.A.S., Silva L.H.M., Simulation of NaCl and KCl mass transfer during salting of Prato cheese in brine with agitation: a numerical solution, Braz. J. Chem. Eng. 24 (2007) 337–349. [Google Scholar]
  10. Bona E., da Silva R.S.S.F., Borsato D., Silva L.H.M., Fidelis D.A.D., Multicomponent diffusion modeling and simulation in prato cheese salting using brine at rest: the finite element method approach, J. Food Eng. 79 (2007) 771–778. [CrossRef] [Google Scholar]
  11. Bressan J.A., Carroad P.A., Merson R.L., Dunkley W.L., Modelling of isothermal diffusion of whey components from small curd cottage cheese during washing, J. Food Sci. 47 (1982) 84–88. [CrossRef] [Google Scholar]
  12. Broyart B., Boudhrioua N., Bonazzi C., Daudin J.-D., Modelling of moisture and salt transport in gelatine gels during drying at constant temperature, J. Food Eng. 81 (2007) 657–671. [CrossRef] [Google Scholar]
  13. Callaghan P.T., Jolley K.W., Humphrey R.S., Diffusion of fat and water in cheese as studied by pulsed field gradient nuclear magnetic resonance, J. Colloid Interface Sci. 93 (1983) 521–529. [CrossRef] [Google Scholar]
  14. Carreroa G., McDonald D., Crawford E., de Vries G., Hendzel M.J., Using FRAP and mathematical modelling to determine the in vivo kinetics of nuclear proteins, Methods 29 (2003) 14–28. [CrossRef] [PubMed] [Google Scholar]
  15. Cayot N., Dury-Brun C., Karbowiak T., Savary G., Voilley A., Measurement of transport phenomena of volatile compounds: a review, Food Res. Int. 41 (2008) 349–362. [CrossRef] [Google Scholar]
  16. Colsenet R., Soderman O., Mariette F., Effect of casein concentration in suspensions and gels on poly(ethylene glycol)s NMR self-diffusion measurements, Macromolecules 38 (2005) 9171–9179. [CrossRef] [Google Scholar]
  17. Crank J., The Mathematics of Diffusion, Oxford University Press, Oxford, UK, 1975. [Google Scholar]
  18. Crank J., Park G.S., Methods of measurement, in: Crank J., Park G.S. (Eds.), Diffusion in Polymers, Academic Press, Inc., London, UK, 1968, pp. 1–39. [Google Scholar]
  19. Cussler E.W., Diffusion: Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, UK, 1976. [Google Scholar]
  20. Djelveh G., Gros J.B., Bories B., An improvement of the cell diffusion method for the rapid determination of diffusion constants in gels or foods, J. Food Sci. 54 (1989) 166–169. [CrossRef] [Google Scholar]
  21. Doulia D., Tzia K., Gekas V., A knowledge base for the apparent mass diffusion coefficient (D-eff) of foods, Int. J. Food Prop. 3 (2000) 1–14. [CrossRef] [Google Scholar]
  22. Feunteun S., Mariette F., Impact of casein gel microstructure on self-diffusion coefficient of molecular probes measured by 1H PFG-NMR, J. Agric. Food Chem. 55 (2007) 10764–10772. [CrossRef] [PubMed] [Google Scholar]
  23. Floury J., Rouaud O., le Poullennec M., Famelart M.H., Reducing salt level in food. Part 2: Modelling salt diffusion in model cheese systems with regards to their composition, LWT-Food Sci. Technol. 42 (2009) 1621–1628. [CrossRef] [Google Scholar]
  24. Frias J.M., Foucat L., Bimbenet J.J., Bonazzi C., Modeling of moisture profiles in paddy rice during drying mapped with magnetic resonance imaging, Chem. Eng. J. 86 (2002) 173–178. [CrossRef] [Google Scholar]
  25. Gerla P.E., Rubiolo A.C., A model for determination of multicomponent diffusion coefficients in foods, J. Food Eng. 56 (2003) 401–410. [CrossRef] [Google Scholar]
  26. Geurts T.G., Oortwijn H., Transport phenomena in butter, its relation to its structure, Neth. Milk Dairy J. 29 (1975) 253–262. [Google Scholar]
  27. Geurts T., Walstra P., Mulder H., Transport of salt and water during salting of cheese. I. Analysis of the processes involved, Neth. Milk Dairy J. 28 (1974) 102–129. [Google Scholar]
  28. Gomes A.M.P., Vieira M.M., Malcata F.X., Survival of probiotic microbial strains in a cheese matrix during ripening: simulation of rates of salt diffusion and microorganism survival, J. Food Eng. 36 (1998) 281–301. [CrossRef] [Google Scholar]
  29. Gros J.B., Rüegg M., Determination of the apparent diffusion coefficient of sodium chloride in model foods and cheese, in: Jowitt R. (Ed.), Physical Properties of Foods, Vol. 2, Elsevier Applied Science, London, UK, 1987, pp. 71–108. [Google Scholar]
  30. Guiheneuf T.M., Gibbs S.J., Hall L.D., Measurement of the inter-diffusion of sodium ions during pork brining by one-dimensional 23Na Magnetic Resonance Imaging (MRI), J. Food Eng. 31 (1997) 457–471. [CrossRef] [Google Scholar]
  31. Guinee T.P., Studies on the movements of sodium chloride and water in cheese and the effects on cheese ripening, Ph.D. Thesis, National University of Ireland, Cork, 1985. [Google Scholar]
  32. Guinee T.P., Salting and the role of salt in cheese, Int. J. Dairy Technol. 57 (2004) 99–109. [CrossRef] [Google Scholar]
  33. Guinee T.P., Fox P.F., Sodium-chloride and moisture changes in Romano-type cheese during salting, J. Dairy Res. 50 (1983) 511–518. [CrossRef] [Google Scholar]
  34. Guinee T.P., Fox P.F., Influence of cheese geometry on the movement of sodium-chloride and water during brining, Ir. J. Food Sci. Technol. 10 (1986) 73–96. [Google Scholar]
  35. Guinee T.P., Fox P.F., Influence of cheese geometry on the movement of sodium-chloride and water during ripening, Ir. J. Food Sci. Technol. 10 (1986) 97–118. [Google Scholar]
  36. Guinee T.P., Fox P.F., Salt in Cheese: Physical, Chemical and Biological Aspects, in: Fox P.F. (Ed.), Cheese: Chemistry, Physics and Microbiology: General Aspects, Vol. 1, Chapman & Hall, London, UK, 1993, pp. 257–302. [Google Scholar]
  37. Guinee T.P., Fox P.F., Salt in cheese: physical, chemical and biological aspects, in: Fox P.F., McSweeney P.L.H., Cogan T.M., Guinee T.P. (Eds.), Cheese: Chemistry, Physics and Microbiology: General Aspects, Vol. 1, Elsevier Applied Science, London, UK, 2004, pp. 207–259. [CrossRef] [Google Scholar]
  38. Gutenwik J., Nilsson B., Axelsson A., Determination of protein diffusion coefficients in agarose gel with a diffusion cell, Biochem. Eng. J. 19 (2009) 1–7. [CrossRef] [Google Scholar]
  39. Hallström B., Skjöldebrand C., Trägardh C., Heat transfer and food products, in: Handbook of Chemistry and Physics, Elsevier Applied Science, London, UK, 1988, pp. 1–29. [Google Scholar]
  40. Han J.H., Floros J.D., Potassium sorbate diffusivity in American processed and Mozzarella cheeses, J. Food Sci. 63 (1998) 435–437. [CrossRef] [Google Scholar]
  41. Hardy J., Étude de la diffusion du sel dans les fromages à pâte molle de type camembert. Comparaison du salage à sec et du salage en saumure, Ph.D. Thesis, Université Nancy 1, France, 1976. [Google Scholar]
  42. Ishida N., Kobayashi T., Kano H., Nagai S., Ogawa H., Na-23-NMR imaging of foods, Agric. Biol. Chem. 55 (1991) 2195–2200. [Google Scholar]
  43. Karbowiak T., Hervet H., Leger L., Champion D., Debeaufort F., Voilley A., Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application, Biomacromolecules 7 (2006) 2011–2019. [CrossRef] [PubMed] [Google Scholar]
  44. Kovaleski J.M., Wirth M.J., Applications of fluorescence recovery after photobleaching, Anal. Chem. 69 (1997) 600–605. [Google Scholar]
  45. Kuo M.I., Anderson M., Gunasekaran S., Determining effects of freezing on pasta filata and non-pasta filata Mozzarella cheeses by nuclear magnetic resonance imaging, J. Dairy Sci. 86 (2003) 2525–2536. [CrossRef] [PubMed] [Google Scholar]
  46. Lauverjat C., Compréhension des mécanismes impliqués dans la mobilité et la libération du sel et des composés d’arôme et leur rôle dans la perception. Cas de matrices fromagères modèles, Ph.D. Thesis, AgroParisTech, France, 2009. [Google Scholar]
  47. Lauverjat C., de Loubens C., Déléris I., Tréléa I.C., Souchon I., Rapid determination of partition and diffusion properties for salt and aroma compounds in complex food matrices, J. Food Eng. 4 (2009) 407–415. [CrossRef] [Google Scholar]
  48. Lawrence R.C., Gilles J., Factors that determine the pH of young Cheddar cheese, N. Z. J. Dairy Sci. Technol. 17 (1982) 1–14. [Google Scholar]
  49. Lebrun L., Junter G.A., Diffusion of sucrose and dextran through agar-gel membranes, Enzym. Microb. Technol. 15 (1993) 1057–1062. [CrossRef] [Google Scholar]
  50. Lucas T., Bohuon Ph., Model-free estimation of mass-fluxes based on concentration profiles. I. Presentation of the method and of a sensitivity analysis, J. Food Eng. 70 (2005) 129–137. [CrossRef] [Google Scholar]
  51. Luna J.A., Bressan J.A., Mass-transfer during brining of Cuartirolo Argentino cheese, J. Food Sci. 51 (1986) 829–831. [CrossRef] [Google Scholar]
  52. Luna J.A., Bressan J.A., Mass-transfer during ripening of Cuartirolo Argentino cheese, J. Food Sci. 52 (1987) 308–311. [CrossRef] [Google Scholar]
  53. Luna J.A., Chavez M.S., Mathematical-model for water diffusion during brining of hard and semi-hard cheese, J. Food Sci. 57 (1992) 55–58. [CrossRef] [Google Scholar]
  54. Mammarella E.J., Rubiolo A.C., Predicting the packed-bed reactor performance with immobilized microbial lactase, Process Biochem. 41 (2006) 1627–1636. [CrossRef] [Google Scholar]
  55. Mariette F., Topgaard D., Jonsson B., Soderman O., 1H NMR diffusometry study of water in casein dispersions and gels, J. Agric. Food Chem. 50 (2002) 4295–4302. [CrossRef] [PubMed] [Google Scholar]
  56. Metais A., Cambert M., Riaublanc A., Mariette F., Effects of casein and fat content on water self-diffusion coefficients in casein systems: a pulsed field gradient nuclear magnetic resonance study, J. Agric. Food Chem. 52 (2004) 3988–3995. [CrossRef] [PubMed] [Google Scholar]
  57. Meyvis T.K.L., De Smedt S.C., Van Oostveldt P., Demeester J., Fluorescence recovery after photobleaching: a versatile tool for mobility and interaction measurements in pharmaceutical research, Pharm. Res. 16 (1999) 1153–1162. [CrossRef] [PubMed] [Google Scholar]
  58. Moraine R.A., Rogovin P., Kinetics of polysaccharide B-1459 fermentation, Biotechnol. Bioeng. 8 (1996) 511–524. [CrossRef] [Google Scholar]
  59. Nagata T., Chuda Y., Yan X., Suzuki M., Kawasaki K., The state analysis of NaCl in snow crab (Chionoecetes japonicus) meat examined by 23Na and 35Cl nuclear magnetic resonance (NMR) spectroscopy, J. Sci. Food Agric. 80 (2000) 1151–1154. [CrossRef] [Google Scholar]
  60. Pajonk A.S., Saurel R., Andrieu J., Experimental study and modelling of effective NaCl diffusion coefficients values during Emmental cheese brining, J. Food Eng. 60 (2003) 307–313. [CrossRef] [Google Scholar]
  61. Payne M.R., Morison K.R., A multi-component approach to salt and water diffusion in cheese, Int. Dairy J. 9 (1999) 887–894. [CrossRef] [Google Scholar]
  62. Ramos-Cabrer P., Van Duynhoven J.P.M., Timmer H., Nicolay K., Monitoring of moisture redistribution in multicomponent food systems by use of magnetic resonance imaging, J. Agric. Food Chem. 54 (2006) 672–677. [CrossRef] [PubMed] [Google Scholar]
  63. Renou J.-P., Benderbous S., Bielicki G., Foucat L., Donnat J.-P., 23Na magnetic resonance imaging: distribution of brine in muscle, MRI 12 (1994) 131–137. [CrossRef] [Google Scholar]
  64. Resmini P., Volonterio G., Annibaldi S., Ferri G., Study of salt diffusion in Parmigiano-Reggiano cheese using Na36Cl, Sci. Tec. Latt.-Casearia 25 (1974) 149–166. [Google Scholar]
  65. Ruiz-Cabrera M.A., Gou P., Foucat L., Renou J.P., Daudin J.D., Water transfer analysis in pork meat supported by NMR imaging, Meat Sci. 67 (2005) 169–178. [CrossRef] [Google Scholar]
  66. Schwartzberg H.G., Chao R.Y., Solute diffusivities in leaching processes, Food Technol. 36 (1982) 73–86. [Google Scholar]
  67. Seiffert S., Oppermann W., Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope, J. Microsc. Oxford 220 (2005) 20–30. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  68. Sherwood T.G., Pigford R.L., Wilke C.R., Mass transfer, in: Clark B.J., Maisel J.W. (Eds.), McGraw-Hill Inc., New York, USA, 1975, pp. 39–43. [Google Scholar]
  69. Simal S., Sanchez E.S., Berna A., Mulet A., Simulation of counter-diffusional mass transfer, Chem. Eng. Commun. 189 (2002) 173–183. [CrossRef] [Google Scholar]
  70. Simal S., Sanchez E.S., Bon J., Femenia A., Rossello C., Water and salt diffusion during cheese ripening: effect of the external and internal resistances to mass transfer, J. Food Eng. 48 (2001) 269–275. [CrossRef] [Google Scholar]
  71. Stephan J., Couriol C., Fourcade F., Amrane A., Prigent Y., Diffusion of glutamic acid in relation to growth of Geotrichum candidum and Penicillium camembertii at the surface of a solid medium, J. Chem. Technol. Biotechnol. 79 (2004) 234–239. [CrossRef] [Google Scholar]
  72. Takeuchi S., Maeda M., Gomi Y., Fukuoka M., Watanabe H., The change of moisture distribution in a rice grain during boiling as observed by NMR imaging, J. Food Eng. 33 (2008) 281–297. [CrossRef] [Google Scholar]
  73. Taylor R., Krishna R., Multicomponent Mass Transfer, Wiley, New York, USA, 1993. [Google Scholar]
  74. Turhan M., Modelling of salt transfer in white cheese during short initial brining, Neth. Milk Dairy J. 50 (1996) 541–550. [Google Scholar]
  75. Turhan M., Gunasekaran S., Analysis of moisture transfer in White cheese during brining, Milchwissenschaft 54 (1999) 446–450. [Google Scholar]
  76. Turhan M., Kaletunc G., Modelling of salt diffusion in white cheese during long-term brining, J. Food Sci. 57 (1992) 1082–1085. [CrossRef] [Google Scholar]
  77. Varzakas T.H., Leach G.C., Israilides C.J., Arapoglou D., Theoretical and experimental approaches towards the determination of solute effective diffusivities in foods, Enzym. Microb. Technol. 37 (2005) 29–41. [CrossRef] [Google Scholar]
  78. Vestergaard C., Andersen B.L., Adler-Nissen J., Sodium diffusion in cured pork determined by 22Na radiology, Meat Sci. 76 (2007) 258–265. [CrossRef] [PubMed] [Google Scholar]
  79. Vestergaard C., Risum J., Adler-Nissen J., 23Na-MRI quantification of sodium and water mobility in pork during brine curing, Meat Sci. 69 (2005) 663–672. [CrossRef] [PubMed] [Google Scholar]
  80. Voilley A., Souchon I., Flavour retention and release from the food matrix: an overview, in: Voilley A., Etievant P. (Eds.), Flavour in Food, Woodhead Publishing Limited, Cambridge, UK, 2006, pp. 117–132. [Google Scholar]
  81. Warin F., Gekas V., Voirin A., Dejmek P., Sugar diffusivity in agar gel/milk bilayer systems, J. Food Sci. 62 (1997) 454–456. [CrossRef] [Google Scholar]
  82. Welti-Chanes J., Mujica-Paz H., Valdez-Fragoso A., Leon-Cruz R., Fundamentals of Mass Transport, in: Welti-Chanes J., Vélez-Ruiz J.F., Barbosa-Cánovas G.V. (Eds.), Transport Phenomena in Food Processing, CRC Press, Boca Raton, USA, 2003, pp. 11–65. [Google Scholar]
  83. Wesselingh J.A., Krishna R., Mass Transfer in Multicomponent Mixtures, Delft University Press, Delft, Netherlands, 2000. [Google Scholar]
  84. Wesselingh J.A., Vonk P., Kraaijeveld G., Exploring the Maxwell-Stefan description of ion-exchange, Chem. Eng. J. Biochem. Eng. J. 57 (1995) 75–89. [CrossRef] [Google Scholar]
  85. Wilde J., Baumgartner C., Fertsch B., Hinrichs J., Matrix effects on the kinetics of lactose hydrolysis in fermented and acidified milk products, Chem. Biochem. Eng. 15 (2001) 143–147. [Google Scholar]
  86. Wiles P.G., Baldwin A.J., Dry salting of cheese, part I: Diffusion, Food Bioprod. Process. 74 (C3) (1996) 127–132. [Google Scholar]
  87. Yanniotis S., Anifantakis E., Diffusion of salt in dry-salted Feta cheese, in: Jowitt R., Escher F., Hallstrom B., Meffert H.F.T., Spiess W.E.L., Vos G. (Eds.), Physical Properties of Foods, Applied Science Publishers, London, UK, 1983. [Google Scholar]
  88. Zorrilla S.E., Rubiolo A.C., A model for using the diffusion cell in the determination of multicomponent diffusion-coefficients in gels or foods, Chem. Eng. Sci. 49 (1994) 2123–2128. [CrossRef] [Google Scholar]
  89. Zorrilla S.E., Rubiolo A.C., Fynbo cheese NaCl and KCl changes during ripening, J. Food Sci. 59 (1994) 972–975. [CrossRef] [Google Scholar]
  90. Zorrilla S.E., Rubiolo A.C., Modeling NaCl and KCl movement in Fynbo cheese during salting, J. Food Sci. 59 (1994) 976–980. [CrossRef] [Google Scholar]