Open Access
Issue
Dairy Sci. Technol.
Volume 90, Number 5, September–October 2010
Page(s) 565 - 577
DOI https://doi.org/10.1051/dst/2010019
Published online 26 April 2010
  1. Allen C., Parks O.W., Evidence for methional in skim milk exposed to sunlight, J. Dairy Sci. 58 (1975) 1609–1611. [CrossRef] [Google Scholar]
  2. Andersen L.T., Lund M.N., Glyager R., Jensen S.B., Mortensen G., Skibsted L.H., Light-induced deterioration of reduced-fat cream cheese. Relative importance of protein and lipid oxidation, Milchwissenschaft 61 (2006) 162–165. [Google Scholar]
  3. Balestrieri M., Spagnuolo M.S., Cigliano L., Storti G., Ferrara L., Abrescia P., Fedele E., Evaluation of oxidative damage in mozzarella cheese produced from bovine or water buffalo milk, Food Chem. 77 (2002) 293–299. [CrossRef] [Google Scholar]
  4. Bradley D.G., Min D.B., Singlet oxygen oxidation of foods, Crit Rev. Food Sci. Nutr. 31 (1992) 211–236. [CrossRef] [PubMed] [Google Scholar]
  5. Dalsgaard T.K., Otzen D., Nielsen J.H., Larsen L.B., Changes in structures of milk proteins upon photo-oxidation, J. Agric. Food Chem. 55 (2007) 10968–10976. [CrossRef] [PubMed] [Google Scholar]
  6. Diaz M., Dunn C.M., McClements D.J., Decker E.A., Use of caseinophosphopeptides as natural antioxidants in oil-in-water emulsions, J. Agric. Food Chem. 51 (2003) 2365–2370. [CrossRef] [PubMed] [Google Scholar]
  7. Dimick P.S., Kilara A., Photo-oxidative changes in milk-proteins and amino-acids, Milchwissenchaft 35 (1983) 289–299. [Google Scholar]
  8. Fragata M., Bellemare F., Model of singlet oxygen scavenging by alpha-tocopherol in biomembranes, Chem. Phys. Lipids 27 (1980) 93–99. [CrossRef] [Google Scholar]
  9. Frankel E.N., Chemistry of free radical and singlet oxidation of lipids, Prog. Lipid Res. 23 (1984) 197–221. [CrossRef] [PubMed] [Google Scholar]
  10. Havemose M.S., Weisbjerg M.R., Bredie W.L.P., Nielsen J.H., The influence of feeding different types of roughage on the oxidative stability of milk, Int. Dairy J. 14 (2004) 563–570. [CrossRef] [Google Scholar]
  11. IDF, Standard 4A, Cheese and processed cheeese, determination of the total solids content (reference method), Int. Dairy Fed., Brussels, Belgium, 1982. [Google Scholar]
  12. IDF, Standard 20A, Milk, determination of nitrogen content (Kjeldahl method) and calculation of crude protein content, Int. Dairy Fed., Brussels, Belgium, 1986. [Google Scholar]
  13. IDF, Standard 88A, Cheese and processed cheese products determination of chloride content potentiometric titration method, Int. Dairy Fed., Brussels, Belgium, 1988. [Google Scholar]
  14. IDF, Standard 152A, Milk and milk products, determination of fat content, general guidance on the use of butyrometric methods, Int. Dairy Fed., Brussels, Belgium, 1997. [Google Scholar]
  15. Jung M.Y., Yoon S.H., Lee H.O., Min D.B., Singlet oxygen and ascorbic acid effects on dimethyl disulfide and off-flavor in skim milk exposed to light, J. Food Sci. 63 (1998) 408–412. [CrossRef] [Google Scholar]
  16. Kaiser S., Di Mascio P., Murphy M.E., Sies H., Physical and chemical scavenging of singlet molecular-oxygen by tocopherols, Arch. Biochem. Biophys. 277 (1990) 101–108. [CrossRef] [PubMed] [Google Scholar]
  17. Kanner J.D., Fennema O., Photooxidation of tryptophan in the presence of riboflavin, J. Agric. Food Chem. 35 (1987) 71–76. [CrossRef] [Google Scholar]
  18. Kikugawa K., Kato T., Hayasaka A., Formation of dityrosine and other fluorescent amino-acids by reaction of amino-acids with lipid hydroperoxides, Lipids 26 (1991) 922–929. [CrossRef] [PubMed] [Google Scholar]
  19. Kim Y.D., Morr C.V., Dynamic headspace analysis of light activated flavor in milk, Int. Dairy J. 6 (1996) 185–193. [CrossRef] [Google Scholar]
  20. Kochevar I.E., Edmond R.W., Photosensitized production of singlet oxygen, in: Packer L. (Ed.), Singlet Oxygen, UV-A and Ozone, Methods in Enzymology, Academic Press, London, UK, 2000, pp. 20–28. [CrossRef] [Google Scholar]
  21. Lee H.H., Photooxidation and photosensitized oxidation of linoleic acid, milk and lard, Ph.D. Thesis, Tje Ohio State University, Columbus, USA, 2002. [Google Scholar]
  22. Lee J.H., Min D.B., Changes of headspace volatiles in milk with riboflavin photosensitization, J. Food Sci. 74 (2009) C563–C568. [CrossRef] [PubMed] [Google Scholar]
  23. Mortensen G., Sørensen J., Stapefeldt H., Effect of light and oxygen transmission characteristics of packaging materials on photo-oxidative quality changes in semi-hard Havarti cheeses, Packaging Tech. Sci. 15 (2002) 121–127. [CrossRef] [Google Scholar]
  24. Mortensen G., Sørensen J., Stapelfeldt H., Effect of modified atmosphere packaging and storage conditions on photooxidation of sliced Havarti cheese, Eur. Food Res. Tech. 216 (2003) 57–62. [Google Scholar]
  25. Østdal H., Andersen H.J., Nielsen J.H., Antioxidative activity of urate in bovine milk, J. Agric. Food Chem. 48 (2000) 5588–5592. [CrossRef] [PubMed] [Google Scholar]
  26. Rawls H.R., van Santen P.J., A possible role for singlet oxygen in the initiation of fatty acid autoxidation, J. Am. Oil Chem. Soc. 47 (1970) 121–125. [CrossRef] [Google Scholar]
  27. Saeed S., Gillies D., Wagner G., Howell N.K., ESR and NMR spectroscopy studies on protein oxidation and formation of dityrosine in emulsions containing oxidised methyl linoleate, Food Chem. Toxicol. 44 (2006) 1385–1392. [CrossRef] [PubMed] [Google Scholar]
  28. Silva E., GodoyJ., Riboflavin sensitized photooxidation of tyrosine, Int. J. Vitam. Nutr. Res. 64 (1994) 253–256. [PubMed] [Google Scholar]
  29. Silva L.S., Trevisan M.G., Rath S., Poppi R.J., Reyes F.G.R., Chromatographic determination of ribofflavin in the presence of tetracyclines in skimmed and full cream milk using fluorescence detection, J. Brazilian Chem. Soc. 16 (2005) 1174–1178. [Google Scholar]
  30. Skibsted L.H., Light-induced changes in dairy product, Bull. IDF 346 (2000) 4–9. [Google Scholar]
  31. Taylor M.J., Richardson T., Antioxidant activity of skim milk – effect of heat and resultant sulfhydryl-groups, J. Dairy Sci. 63 (1980) 1783–1795. [CrossRef] [Google Scholar]
  32. Wold J.P., Bro R., Veberg A., Lundby F., Nilsen A.N., Moan J., Active photosensitizers in butter detected by fluorescence spectroscopy and multivariate curve resolution, J. Agric. Food Chem. 54 (2006) 10197–10204. [CrossRef] [PubMed] [Google Scholar]
  33. Wold J.P., Dahl A.V., Lundby F., Nilsen A.N., Juzeniene A., Moan J., Effect of oxygen concentration on photo-oxidation and photosensitizer bleaching in butter, J. Photochem. Photobiol. 85 (2009) 669–676. [CrossRef] [Google Scholar]
  34. Wold J.P., Veberg A., Lundby F., Nilsen A.N., Moan J., Influence of storage time and color of light on photooxidation in cheese: a study based on sensory analysis and fluorescence spectroscopy, Int. Dairy J. 16 (2006) 1218–1226. [CrossRef] [Google Scholar]
  35. Wold J.P., Veberg A., Nilsen A., Iani V., Juzenas P., Moan J., The role of naturally occurring chlorophyll and porphyrins in light-induced oxidation of dairy products. A study based on fluorescence spectroscopy and sensory analysis, Int. Dairy J. 15 (2005) 343–353. [CrossRef] [Google Scholar]
  36. Yang S., Lee J., Lee J., Lee J., Effects of riboflavin-photo sensitization on the formation of volatiles in linoleic acid model systems with sodium azide or D2O, Food Chem. 105 (2007) 1375–1381. [CrossRef] [Google Scholar]
  37. Yang W.T., Lee J.H., Min D.B., Quenching mechanisms and kinetics of alpha-tocopherol and beta-carotene on the photosensitizing effect of synthetic food colorant FD&C Red No. 3, J. Food Sci. 67 (2002) 507–510. [CrossRef] [Google Scholar]