Free Access
Dairy Sci. Technol.
Volume 89, Number 5, September-October 2009
Page(s) 449 - 461
Published online 23 June 2009
References of  Dairy Sci. Technol. 89 (2009) 449–461
  1. American Institute of Nutrition, Report of the American Institute of Nutrition ad hoc committee on standards for nutritional studies, J. Nutr. 107 (1977) 1340–1348 [PubMed].
  2. American Institute of Nutrition, Second report of the ad hoc committee on standards for nutritional studies, J. Nutr. 110 (1980) 1726.
  3. Azuma N., Maeta A., Fukuchi K., Kanno C., A rapid method for purifying osteopontin from bovine milk and interaction between osteopontin and other milk proteins, Int. Dairy J. 16 (2006) 370–378 [CrossRef].
  4. Compston Juliet E., Sex steroid and bone, Physiol. Rev. 81 (2001) 419–444 [PubMed].
  5. Cornish J., Callon K.E., Naot D., Palmano K.P., Banovic T., Bava U., Watson M., Lin J.M., Tong P.C., Chen Q., Chan V.A., Reid H.E., Fazzalari N., Baker H.M., Baker E.N., Haggarty N.W., Grey A.B., Reid I.R., Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo, Endocrinology 145 (2004) 4366–4374 [CrossRef] [PubMed].
  6. Cui L., Wu T., Liu X., Liu Y., Low dose estrogen combined with traditional Chinese medicine prevents osteoporosis in ovariectomized rats, Chin. J. Osteoporos. 9 (2003) 200–204 [in Chinese].
  7. Davis P.F., Greenhill N.S., Rowan A.M., Schollum L.M., The safety of New Zealand bovine colostrums: nutritional and physiological evaluation in rats, Food Chem. Toxicol. 45 (2007) 229–236 [CrossRef] [PubMed].
  8. Denhardt D.T., Noda M., O'Regan A.W., Pavlin D., Berman J.S., Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival, J. Clin. Investig. 107 (2001) 1055–1061 [CrossRef].
  9. Du M., Xu W., Yi H., Han X., Zhang L., Beneficial effects of bovine colostrum acid protein on bone properties of ovariectomized rats, 19th International Congress of Nutrition 2009, Bangkok, Thailand.
  10. Ermond V.B., Clemens L., Marcel K., Socrates P., Independent pathways in the modulation of osteoclastic resorption by intermediates of the mevalonate biosynthetic pathway: the role of the retinoic acid receptor, Bone 38 (2006) 167–171 [CrossRef] [PubMed].
  11. Fong B.Y., Norris C.S., Palmano K.P., Fractionation of bovine whey proteins and characterisation by proteomic techniques, Int. Dairy J. 18 (2008) 23–46 [CrossRef].
  12. Francis G.I., Purification and partial sequence analysis of insulin like growth factor 1 from bovine colostrums, Biochem. J. 233 (1986) 207–210 [PubMed].
  13. Francis G.L., Upton F.M., Ballard F.J., McNeil K.A., Wallace J.C., Insulin-like growth factors 1 and 2 in bovine colostrum. Sequences and biological activities compared with those of a potent truncated form, Biochem. J. 251 (1988) 95–103 [PubMed].
  14. Ginty F., Rennie K.L., Mills L., Stear S., Jones S., Prentice A., Positive, site-specific associations between bone mineral status, fitness, and time spent at high-impact activities in 16- to 18-year-old boys, Bone 36 (2005) 101–110 [CrossRef] [PubMed].
  15. Goff J., Reinhardt T., Lee S., Hollis B., Parathyroid hormone-related peptide content of bovine milk and calf blood assessed by radioimmunoassay and bioassay, Endocrinology 129 (1991) 2815–2819 [CrossRef] [PubMed].
  16. Gu W., Kirsten L.R., Lin X., Wang Y.F., Yu Z.J., Differences in bone mineral status between urban and rural Chinese men and women, Bone 41 (2007) 393–399 [CrossRef] [PubMed].
  17. Jouan P.N., Pouliot Y., Gauthier S.F., Laforest J.P., Hormones in bovine milk and milk products: a survey, Int. Dairy J. 16 (2006) 1408–1414 [CrossRef].
  18. Kazuya O., Akihide N., Morihiro M., Masanori I., Atsunori F., Jun H., Hideki Y., Iichiro S., Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast, Biochem. Biophys. Res. Commun. 331 (2005) 520–526 [CrossRef] [PubMed].
  19. Kelly G.S., Bovine colostrums a review of clinical uses, Altern. Med. Rev. 8 (2003) 378–394 [PubMed].
  20. Kruger C.L., Marano K.M., Morita Y., Takada Y., Kawakami H., Kobayashi T., Sunaga M., Furukawa M., Kawamura K., Safety evaluation of a milk basic protein fraction, Food Chem. Toxicol. 45 (2007) 1301–1307 [CrossRef] [PubMed].
  21. Kruger M.C., Plimmer G.G., Schollum L.M., Haggarty N., Ram S., Palmano K., The effect of whey acidic protein fractions on bone loss in the ovariectomised rat, Br. J. Nutr. 93 (2005) 244–252 [CrossRef].
  22. Kruger M.C., Poulsen R.C., Schollum L., Haggarty N., Ram S., Palmano K., A comparison between acidic and basic protein fractions from whey or milk for reduction of bone loss in the ovariectomised rat, Int. Dairy J. 16 (2006) 1149–1156 [CrossRef].
  23. Lee J., Kwon S.H., Kim H.M., Fahey S.N., Knighton D.R., Sansom A., Effect of growth protein-colostrum fraction on bone development in juvenile rats, Biosci. Biotechnol. Biochem. 72 (2008) 1–6 [CrossRef] [PubMed].
  24. Li X.J., Jee W.S., Age-related changes of cancerous and cortical bone histomorphometry in female Sprague-Dawley rats, Cells Mater. 1 (1991) 25–35.
  25. Li Z., Kong K., Qi W., Osteoclast and its roles in calcium metabolism and bone development and remodeling, Biochem. Biophys. Res. Commun. 343 (2006) 345–350 [CrossRef] [PubMed].
  26. Lu Y., Chai W., Lin X., Effect of milk basic protein on rat bone mineral density, J. Hyg. Res. 36 (2007) 37–40 [in Chinese].
  27. Morita Y., Matsuyama H., Serizawa A., Takeya T., Kawakami H., Identification of angiogenin as the osteoclastic bone resorption-inhibitory factor in bovine milk, Bone 42 (2008) 380–387 [CrossRef] [PubMed].
  28. Nakamura A., Ly C., Cipetiæ M., Natalie A.S., Vieusseux J., Kartsogiannis V., Bouralexis S., Saleh H., Zhou H., Price J.T., Martin T.J., KongW.N., Matthew T.G., Julian M.W.Q., Osteoclast inhibitory lectin (OCIL) inhibits osteoblast differentiation and function in vitro, Bone 40 (2007) 305–315 [CrossRef] [PubMed].
  29. Okuda N., Takeda S., Shinomiya K., Muneta T., Itoh S., Noda M., Asou Y., ED-71, a novel vitamin D analog, promotes bone formation and angiogenesis and inhibits bone resorption after bone marrow ablation, Bone 40 (2007) 281–292 [CrossRef] [PubMed].
  30. Pouliot Y., Gauthier S.F., Milk growth factors as health products: some technological aspects, Int. Dairy J. 16 (2006) 1415–1420 [CrossRef].
  31. Ruegsegger P., Durand E.P., Dambacher M.A., Different effects of aging and disease on trabecular and compact bone density of the radius, Bone 12 (1991) 99–105 [CrossRef] [PubMed].
  32. Schmidmaier G., Wildemann B., Heeger J., Gäbelein T., Flyvbjerg A., Bail H.J., Raschke M., Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-$\beta$1, Bone 31 (2002) 165–172 [CrossRef] [PubMed].
  33. Seeman E., Invited review: pathogenesis of osteoporosis, J. Appl. Physiol. 95 (2003) 2142–2151 [PubMed].
  34. Siddiqui N.A., Shetty K.R., Duthie E.H.J.R., Osteoporesis in older men: discovering when and how to treat it, Geriatrics 54 (1999) 20–22, 27–28, 30.
  35. Sims N.A., Morris H.A., Moore R.J., Durbridge T.C., Estradiol treatment transiently increases trabecular bone volume in ovariectomized rats, Bone 19 (1996) 455–461 [CrossRef] [PubMed].
  36. Smithers G.W., Whey and whey proteins: from `gutter-to-gold', Int. Dairy J. 18 (2008) 695–704 [CrossRef].
  37. Tabensky A.D., Williams J., Deluca V., Briganti E., Seeman E., Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body: an in vitro study, J. Bone Miner. Res. 11 (1996) 1981–1988 [PubMed].
  38. Takagi T., Yamamoto T., Asano S., Tamaki H., Effect of prostaglandin D2 on the femoral bone mineral density in ovariectomized rats, Calcif. Tissue Int. 52 (1993) 442–446 [CrossRef] [PubMed].
  39. Toba Y., Takada Y., Matsuoka Y., Morita Y., Motouri M., Hirai T., Suguri T., Aoe S., Kawakami H., Kumegawa M., Takeuchi A., Itabashi A., Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men, Biosci. Biotechnol. Biochem. 65 (2001) 1353–1357 [CrossRef] [PubMed].
  40. Toba Y., Takada Y., Yamamura J., Tanaka M., Matsuoka Y., Kawakami H., Itabashi A., Aoe S., Kumegawa M., Milk basic protein: a novel protective function of milk against osteoporosis, Bone 27 (2000) 403–408 [CrossRef] [PubMed].
  41. Uruakpa F.O., Ismond M.A.H., Akobundu E.N.T., Colostrum and its benefits: a review, Nutr. Res. 22 (2002) 755–767 [CrossRef].
  42. Vanderschueren D., Van Herck E., Suiker A.M., Visser W.J., Schot L.P., Bouillon R., Bone and mineral metabolism in aged male rats short and long term effects of androgen deficiency, Endocrinology 130 (1992) 2906–2916 [CrossRef] [PubMed].
  43. Vidal K., Broek P.V.D., Lorget F., Donnet- Hughes A., Osteoprotegerin in human milk: a potential role in the regulation of bone metabolism and immune development, Pediatr. Res. 55 (2004) 1001–1008 [CrossRef] [PubMed].
  44. Xie Z., Li Q., Meng P., Tan Z., Characteristics of osteoporosis models in ovariectomized rats, Chin. J. Clin. Rehabil. 10 (2006) 79–81.
  45. Yamamura J.I., Takada Y., Goto M., Kumegawa M., Aoe S., High mobility group-like protein in bovine milk stimulates the proliferation of osteoblastic MC3T3-E1 cells, Biochem. Biophys. Res. Commun. 261 (1999) 113–117 [CrossRef] [PubMed].
  46. Yao W., Hadi T., Basic fibroblast growth factor improves trabecular bone connectivity and bone strength in the lumbar vertebral body of osteopenic rats, Osteoporos. Int. 16 (2005) 1939–1947 [CrossRef] [PubMed].
  47. Yao W., Tang Z., Wang D., Jin W., Meng Q., Cao P., Influences of bovine colostrums extract (BCE) on proliferation of osteoblasts and bone development of fetal rats, J. Nanjing Agric. Univ. 22 (1999) 59–63 [in Chinese].