Free Access
Dairy Sci. Technol.
Volume 88, Number 6, November-December 2008
Page(s) 667 - 681
Published online 24 December 2008
References of  Dairy Sci. Technol. 88 (2008) 667–681
  1. AOAC, Dairy Products, in: Official Method of Analysis of AOAC International, 16th edition, v. 2, 1996.
  2. Arshad M., Paulsson M., Dejmek P., Rheology of buildup, breakdown and rebodying of acid casein gels, J. Dairy Sci. 76 (1993) 3310–3316.
  3. Braga A.L.M., Menossi M., Cunha R.L., The effect of the glucono-delta-lactone/caseinate ratio on sodium caseinate gelation, Int. Dairy J. 16 (2006) 389–398 [CrossRef].
  4. Bringe N.A., Kinsella J.E., Calcium-chloride, temperature, preheat treatments and pH affect the rate of acid-induced aggregation of casein, Food Hydrocoll. 7 (1993) 113–121.
  5. Bryant C.M., McClements D.J., Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denaturated whey, Trends Food Sci. Technol. 9 (1998) 143–151 [CrossRef].
  6. Carr A.J., Munro P.A., Reversible cold gelation of sodium caseinate solutions with added salt, J. Dairy Res. 71 (2004) 126–128 [CrossRef] [PubMed].
  7. Dalgleish D.G., Law A.J.R., pH-induced dissociation of bovine casein micelles. I. Analysis of liberated caseins, J. Dairy Res. 55 (1988) 529–538.
  8. de Kruif C.G., Roefs S.P.F.M., Skim milk acidification at low temperatures: A model for the stability of casein micelles, Neth. Milk Dairy J. 50 (1996) 113–120.
  9. Ettelaie R., Computer simulation and modeling of food colloids, Curr. Opinion Colloid Interface Sci. 8 (2003) 415–421 [CrossRef].
  10. Farrell H.M., Pessen H., Brown E.M., Kumosinski T.F., Structural insights into the bovine casein micelle – small-angle X-Ray-scattering studies and correlations with spectroscopy, J. Dairy Sci. 73 (1990) 3592–3601.
  11. Gastaldi E., Lagaude A., Marchesseau S., de la Fuente B.T., Acid milk gel formation as affected by total solids content, J. Food Sci. 62 (1997) 671–678 [CrossRef].
  12. Hearle J.W., Polymers and their properties, in: Hearle J.W. (Ed.), Fundamentals of Structure and Mechanics, vol. 1, Ellis Horwood, Chichester, West Sussex, UK, 1982, p. 144.
  13. Holt C., Horne D.S., The hairy casein micelle: Evolution of the concept and its implications for dairy technology, Neth. Milk Dairy J. 50 (1996) 85–111.
  14. Horne D.S., Casein interactions: Casting light on the black boxes, the structure in dairy products, Int. Dairy J. 8 (1998) 171–177 [CrossRef].
  15. Horne D.S., Casein micelles as hard spheres: limitations of the model in acidified gel formation, Colloids Surf. A: Physicochem. Eng. Aspects 213 (2003) 255–263 [CrossRef].
  16. Kalab M., Allanwojtas P., Phippstodd B.E., Development of microstructure in set-style nonfat yogurt – A review, Food Microstr. 2 (1983) 51–66.
  17. Laligant A., Famelart M.H., Paquet D., Brulé G., Fermentation by lactic bacteria at two temperatures of pre-heated reconstituted milk. II – Dynamic approach of the gel construction, Lait 83 (2003) 307–320 [CrossRef].
  18. Lucey J.A., Tamehana M., Singh H., Munro P.A., A comparison of the formation, rheological properties and microstructure of acid skim milk gels made with a bacterial culture or glucono-delta-lactone, Food Res. Int. 31 (1998) 147–155 [CrossRef].
  19. Lucey J.A., Teo C.T., Munro P.A., Singh H., Rheological properties at small dynamic and large yield deformations of acid gels made from heated milk, J. Dairy Res. 64 (1997) 591–600 [CrossRef].
  20. Lucey J.A., van Vliet T., Grolle K., Geurts T., Walstra P., Properties of acid casein gels made by acidification with glucono-delta-lactone. 1. Rheological properties, Int. Dairy J. 7 (1997) 381–388 [CrossRef].
  21. Lucey J.A., van Vliet T., Grolle K., Geurts T., Walstra P., Properties of acid casein gels made by acidification with glucono-delta-lactone. 2. Syneresis, permeability and microstructural properties, Int. Dairy J. 7 (1997) 389-397 [CrossRef].
  22. Oakenfull D., Miyoshi E., Nishinari K., Scott A., Rheological and thermal properties of milk gels formed with kappa-carrageenan. I. Sodium caseinate, Food Hydrocoll. 13 (1999) 525–533 [CrossRef].
  23. Pugnaloni L.A., Matia-Merino L., Dickinson E., Microstructure of acid-induced caseinate gels containing sucrose: Quantification from confocal microscopy and image analysis, Colloids Surf. B: Biointerfaces 42 (2005) 211–217 [CrossRef] [PubMed].
  24. Roefs S.P.F.M., The structure of acid casein gels. A study of gels formed after acidification in the cold, Ph.D. thesis, Wageningen Agricultural University, The Netherlands, 1986.
  25. Roefs S.P.F.M., Walstra P., Dalgleish D.G., Horne D.S., Preliminary note on the change in casein micelles caused by acidification, Neth. Milk Dairy J. 39 (1985) 119–122.
  26. Salaün F., Mietton B., Gaucheron F., Buffering capacity of dairy products, Int. Dairy J. 15 (2005) 95–109 [CrossRef].
  27. Steffe J.F., Rheological Methods in Food Processing Engineering, Freeman Press, East Lansing, MI, USA, 1996.
  28. Swaisgood H.E., Proteins, in: Fox P.F. (Ed.), Developments in Dairy Chemistry, Applied Science Publisher, London, UK, 1982, pp. 1–59.
  29. van Vliet T., Lucey J.A., Grolle K., Walstra P., Rearrangements in acid-induced casein gels during and after gel formation, in: Dickinson E., Bergenstahl B. (Eds.), Food Colloids: Proteins, Lipids and Polysaccharides, Royal Society of Chemistry, Cambridge, UK, 1997, pp. 335–345.
  30. van Vliet T., van Dijk H.J.M., Zoon P., Walstra P., Relation between syneresis and rheological properties of particle gels, Colloid Polym. Sci. 269 (1991) 620–627 [CrossRef].
  31. Vétier N., Desobry-Banon S., Eleya M.M.O., Hardy J., Effect of temperature and acidification rate on the fractal dimension of acidified casein aggregates, J. Dairy Sci. 80 (1997) 3161–3166.
  32. Walstra P., On the stability of casein micelles, J. Dairy Sci. 73 (1990) 1965–1979.
  33. Zoon P., van Vliet T., Walstra P., Rheological properties of rennet-induced skim milk gels. 2. The effect of temperature, Neth. Milk Dairy J. 42 (1988) 249–269.