Free Access
Dairy Sci. Technol.
Volume 88, Number 4-5, July-October 2008
5th Symposium on Cheese Ripening
Page(s) 421 - 444
Published online 09 October 2008
References of  Dairy Sci. Technol. 88 (2008) 421–444
  1. Aarestrup F.M., Veterinary drug usage and antimicrobial resistance in bacteria of animal origin, Bas. Clin. Pharmacol. Toxicol. 96 (2005) 271–281 [CrossRef].
  2. Abraham S., Cachon R., Colas B., Feron G., De Coninck J., E$\rm _h$ and pH gradients in Camembert cheese during ripening: measurements using microelectrodes and correlations with texture, Int. Dairy J. 17 (2007) 954–960 [CrossRef].
  3. Ammor M.S., Florez A.B, Mayo B., Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria, Food Microbiol. 24 (2007) 559–570 [CrossRef] [PubMed].
  4. Anastasiou R., Georgalaki M., Manolopoulou E., Kandarakis I., De Vuyst L., Tsakalidou E., The performance of Streptococcus macedonicus ACA-DC 198 as starter culture in Kasseri cheese production, Int. Dairy J. 17 (2007) 208–217 [CrossRef].
  5. Ardö Y., Flavour formation by amino acid catabolism, Biotechnol. Adv. 24 (2006) 238–242 [CrossRef] [PubMed].
  6. Bachmann H.P., Bütikofer U., Isolini D., Swiss-type cheese, in: Roginski H. (Ed.), Encyclopedia of Dairy Science, Elsevier, Oxford, UK, 2004, pp. 363–371.
  7. Benech R.O., Kheadr E.E., Lacroix C., Fliss I., Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese, J. Dairy Sci. 86 (2003) 1895–1909 [PubMed].
  8. Benech R.O., Kheadr E.E., Laridi R., Lacroix C., Fliss I., Inhibition of Listeria innocua in Cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture, Appl. Environ. Microbiol. 68 (2002) 3683–3690 [CrossRef] [PubMed].
  9. Beresford T.P., Fitzsimons N.A., Brennan N.L., Cogan T.M., Recent advances in cheese microbiology, Int. Dairy J. 11 (2001) 259–274 [CrossRef].
  10. Bergamini C.V., Hynes E.R., Quiberoni A., Suárez V.B., Zalazar C.A., Probiotic bacteria as adjunct starters: influence of the addition methodology on their survival in a semi-hard Argentinean cheese, Food Res. Int. 38 (2005) 597–604 [CrossRef].
  11. Bergamini C.V., Hynes E.R., Zalazar C.A., Influence of probiotic bacteria on the proteolysis profile of a semi-hard cheese, Int. Dairy J. 16 (2006) 856–866 [CrossRef].
  12. Bernbom N., Licht T.R., Brogren C.H., Jelle B., Johansen A.H., Badiola I., Vogensen F.K., Nørrung B., Effect of Lactococcus lactis on composition of intestinal microbiota: role of nisin, Appl. Environ. Microbiol. 72 (2006) 239–244 [CrossRef] [PubMed].
  13. Bockelmann W., Willems K.P., Neve H., Heller K.H., Cultures for the ripening of smear cheeses, Int. Dairy J. 15 (2005) 719–732 [CrossRef].
  14. Bouksaim M., Lacroix C., Audet P., Simard R.E., Effects of mixed starter composition on nisin Z production by Lactococcus lactis subsp lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese, Int. J. Food Microbiol. 59 (2000) 141–156 [CrossRef] [PubMed].
  15. Boylston T.D., Vinderola C.G., Ghoddusi H.B., Reinheimer J.A, Incorporation of bifidobacteria into cheeses: challenges and rewards, Int. Dairy J. 14 (2004) 375–387 [CrossRef].
  16. Brede D.A., Faye T., Stierli M.P., Dasen G., Theiler A., Nes I.F., Meile L., Holo H., Heterologous production of antimicrobial peptides in Propionibacterium freudenreichii, Appl. Environ. Microbiol. 71 (2005) 8077–8084 [CrossRef] [PubMed].
  17. Brennan T.M., Cogan M., Loessner M., Scherer S., Bacterial surface-ripened cheeses, in: Fox P.F., Mc Sweeney P.L.H, Cogan T.M., Guinee T.P. (Eds.), Cheese: Major Cheese Groups, Elsevier, Oxford, UK, 2004, pp. 199–225.
  18. Brul S., Coote P., Preservative agents in foods – Mode of action and microbial resistance mechanisms, Int. J. Food Microbiol. 50 (1999) 1–17 [CrossRef].
  19. Buriti F.C.A., da Rocha J.S., Saad S.M.I., Incorporation of Lactobacillus acidophilus in Minas fresh cheese and its implication for textural and sensorial properties during storage, Int. Dairy J. 15 (2005) 1279–1288 [CrossRef].
  20. Champagne C., Gardner N., Roy D., Challenges in the addition of probiotic cultures to foods, Crit. Rev. Food Sci. Nutr. 45 (2005) 61–84 [CrossRef] [PubMed].
  21. Cheigh C.I., Pyun Y.R., Nisin biosynthesis and its properties, Biotechnol. Lett. 27 (2005) 1641–1648 [CrossRef] [PubMed].
  22. Chipley J.R., Sodium benzoate and benzoic acid, in: Davidson P.M., Branen A.L. (Eds.), Antimicrobials in Foods, Marcel Dekker Inc., New York., USA, 1993, pp. 46.
  23. Choisy C., Desmazeaud M., Gripon J.C., Lamberet G., Lenoir J., La biochimie de l'affinage, in: Eck A., Gillis J.C. (Eds.), Le Fromage, Lavoisier, Paris, 1997, pp. 86–161.
  24. Cinquin C., Le Blay G., Fliss I., Lacroix C., Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model, Microb. Ecol. 48 (2004) 128–138 [CrossRef] [PubMed].
  25. Cinquin C., Le Blay G., Fliss I., Lacroix C., New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota, FEMS Microbiol. Ecol. 57 (2006) 324–336 [CrossRef] [PubMed].
  26. Cleveland J., Montville T.J., Nes I.F., Chikindas M.L., Bacteriocins: safe, natural antimicrobials for food preservation, Int. J. Food Microbiol. 71 (2001) 1–20 [CrossRef] [PubMed].
  27. Coppola R., Succi M., Tremante P., Reale A., Salzano G., Sorrentino Z., Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmegiano Reggiona cheese, Lait 85 (2005) 193–204 [CrossRef].
  28. Corbo M.R., Albenzio M., De Angelis M., Sevi A., Gobbetti M., Microbiological and biochemical properties of Canestrato Pugliese hard cheese supplemented with bifidobacteria, J. Dairy Sci. 84 (2001) 551–561 [PubMed].
  29. Corsetti A., Gobbetti M., Rossi J., Damiani P., Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1, Appl. Microbiol. Biotechnol. 50 (1998) 253–256 [CrossRef] [PubMed].
  30. Cronin T., Ziino M., Condurso C., McSweeney P.L.H., Mills S., Ross R.P., Stanton C., A survey of the microbial and chemical composition of seven semi-ripened Provola dei Nebrodi Sicilian cheeses, J. Appl. Microbiol. 103 (2007) 1128–1139 [PubMed].
  31. Daigle A., Roy D., Bélanger G., Vuillemard J.C., Production of probiotic cheese (Cheddar-like cheese) using enriched cream fermented by Bifidobacterium infantis, J. Dairy Sci. 82 (1999) 1081–1091 [PubMed].
  32. Dave R.I., Shah N.P., Effect of cysteine on the viability of yoghurt and probiotic bacteria in yoghurts made with commercial starter cultures, Int. Dairy J. 7 (1997) 537–545 [CrossRef].
  33. Dave R.I., Shah N.P., Ingredient supplementation effects on viability of probiotic bacteria in yoghurt, J. Dairy Sci. 81 (1998) 2804–2816 [PubMed].
  34. Davidson P.M., Doan C.H., Natamycin, in: Davidson P.M., Branen A.L. (Eds.), Antimicrobials in Foods, Marcel Dekker Inc., New York, USA, 1993, pp. 395.
  35. Delbès C., Ali-Mandjee L., Montel M.C., Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses, Appl. Environ. Microbiol. 73 (2007) 1882–1891 [CrossRef] [PubMed].
  36. Desai A.R., Powell I.B., Shah N.P., Survival and activity of probiotic lactobacilli in skim milk containing prebiotics, J. Food Sci. 69 (2004) 57–60.
  37. Dinakar P., Mistry V.V., Growth and viability of Bifidobacterium bifidum in Cheddar cheese, J. Dairy Sci. 77 (1994) 2854–2864 [PubMed].
  38. Domig K.J., Mayrhofer S., Zitz U., Mair C., Peterson A., Amtmann E., Mayer H.K., Kneifel W., Antibiotic susceptibility testing of Bifidobacterium thermophilum and Bifidobacterium pseudolongum strains: broth microdilution vs. agar disc diffusion assay, Int. J. Food Microbiol. 120 (2007) 191–195 [CrossRef] [PubMed].
  39. Drider J., Fimland G., Héchard Y., McMullen L.M., Prévost H., The continuing story of class IIa bacteriocins, Microbiol. Mol. Biol. Rev. 70 (2006) 564–582 [CrossRef] [PubMed].
  40. Ennahar S., Aoude-Werner D., Sorokine O., van Dorsselaer A., Bringel F., Hubert J.C., Hasselmann C., Production of pediocin AcH by Lactobacillus plantarum WHE92 isolated from cheese, Appl. Environ. Microbiol. 62 (1996) 4381–4387 [PubMed].
  41. Ennahar S., Assobhel O., Hasselmann C., Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lb. plantarum WHE92, a pediocin AcH producer, J. Food Prot. 61 (1998) 186–191 [PubMed].
  42. European Commission (2002), Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of micro-organisms resistant to antibiotics of human clinical and veterinary importance, European Commission, Health and Consumer Protection Directorate General, Directorate C, Scientific Opinions, Brussels, Belgium.
  43. European Food Safety Authority (2004), EFSA Scientific Colloquium Summary Report, QPS: qualified presumption of safety of microorganisms in food and feed, European Food Safety Authority, Brussels, Belgium.
  44. European Food Safety Authority (2005), Updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance, Question No. EFSA-Q2004-079 adopted on May 2005, The EFSA Journal 223, pp. 1–12.
  45. FAO/WHO, Guidelines for the evaluation of probiotics in food, Food and Agricultural Organization of the United Nations and World Health Organization, Working Group Report, London, Ontario, Canada, 2002.
  46. Feld L., Schjorring S., Hammer K., Licht T.R., Danielsen M., Krogflet K., Wilcks A., Selective pressure affects transfer and establishment of a Lactobacillus plantarum resistance plasmid in the gastrointestinal environment, J. Antimicrob. Chemother. 61 (2008) 845–852 [CrossRef] [PubMed].
  47. Filtenborg O.J., Frisvad C., Thrane U., Moulds in food spoilage, Int. J. Food Microbiol. 33 (1996) 85–102 [CrossRef] [PubMed].
  48. Fleet G.H., Yeasts in dairy products, J. Appl. Bacteriol. 68 (1990) 199–211 [PubMed].
  49. Flórez A.B., Mayo B., Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE, Int. J. Food Microbiol. 110 (2006) 165–171 [CrossRef] [PubMed].
  50. Flórez A.B., Delgado S., Mayo B., Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment, Can. J. Microbiol. 51 (2005) 51–58 [CrossRef] [PubMed].
  51. Fontaine L., Hols P., The inhibitory spectrum of thermophilin 9 from Streptococcus thermophilus LMD-9 depends on the production of multiple peptides and the activity of BlpG$_{\rm St}$, a thiol-disulfide oxidase, Appl. Environ. Microbiol. 74 (2008) 1102–1110 [CrossRef] [PubMed].
  52. Foulquié Moreno M.R., Sarantinopoulos P., Tsakalidou E., De Vuyst L., The role and application of enterococci in food and health, Int. J. Food Microbiol. 106 (2006) 1–24 [CrossRef] [PubMed].
  53. Fox P.F., Wallace J.M., Formation of flavor compounds in cheese, Adv. Appl. Microbiol. 45 (1997) 17–85 [PubMed].
  54. Franz C.M.A.P., Stiles M.E., Schleifer K.H., Holzapfel W.H., Enterococci in foods – a conundrum for food safety, Int. J. Food. Microbiol. 88 (2003) 105–122 [CrossRef] [PubMed].
  55. Gálvez A., Abriouel H., López R.L., Omar N.B., Bacteriocin-based strategies for food preservation, Int. J. Food Microbiol. 120 (2007) 51–70 [CrossRef] [PubMed].
  56. Garde S., Avila M., Fernández-García E., Medina M., Nuñez M., Volatile compounds and aroma of Hispanico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639 as an adjunct culture, Int. Dairy J. 17 (2007) 717–726 [CrossRef].
  57. Garde S., Avila M., Gaya P., Medina M., Nuñez M., Proteolysis of Hispánico cheese manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639, J. Dairy Sci. 89 (2006) 840–849 [PubMed].
  58. Gardiner G., Stanton C., Lynch P.B., Collins J.K., Fitzgerald G., Ross R.P., Evaluation of Cheddar cheese as a food carrier for delivery of a probiotic strain to the gastrointestinal tract, J. Dairy Sci. 82 (1999) 1379–1387 [PubMed].
  59. Georgalaki M.D., Van den Berghe E., Kritikos D., Devreese B., Van Beeumen J., Kalantzopoulos G., De Vuyst L., Tsakalidou E., Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198, Appl. Environ. Microbiol. 68 (2002) 5891–5903 [CrossRef] [PubMed].
  60. Giraffa G., Functionality of enterococci in dairy products, Int. J. Food Microbiol. 88 (2003) 215–222 [CrossRef] [PubMed].
  61. Gobbetti M., Corsetti A., Smacchi E., Zocchetti A., De Angelis M., Production of Crescenza cheese by incorporation of bifidobacteria, J. Dairy Sci. 81 (1998) 37–47.
  62. Gobbetti M., De Angelis M., Di Cagno R., Minervini F., Limitone A., Cell-cell communication in food related bacteria, Int. J. Food Microbiol. 120 (2007) 34–45 [CrossRef] [PubMed].
  63. Gomes A.M.P., Malcata F.X., Development of probiotic cheese manufactured from goat milk: response surface analysis via technological manipulation, J. Dairy Sci. 81 (1998) 1492–1507 [PubMed].
  64. Goulet V., de Valk H, Pierre O., Stainer F., Rocourt J., Vaillant V., Jacquet C., Desenclos J.C., Effect of prevention measures on incidence of human listeriosis, France 1987–1997, Emerg. Inf. Dis. 7 (2001) 983–898.
  65. Grattepanche F., Audet P., Lacroix C., Enhancement of functional characteristics of mixed lactic culture producing nisin Z and exopolysaccharides during continuous prefermentation of milk with immobilized cells, J. Dairy Sci. 90 (2007) 5361–5373 [CrossRef] [PubMed].
  66. Guinane C.M., Cotter P.D., Hill C., Ross R.P., Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food, J. Appl. Microbiol. 98 (2005) 1316–1325.
  67. He T., Priebe M.G., Zhong Y., Huang C., Harmsen H.J.M., Raang G.C., Antoine J.M., Welling G.W., Vonk R.J., Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects, J. Appl. Microbiol. 104 (2008) 595–604 [PubMed].
  68. Holzapfel W.H., Haberer P., Geisen R., Björkroth J., Schillinger U., Taxonomy and important features of probiotic microorganisms in food and nutrition, Am. J. Clin. Nutr. 73 (2001) 365–373.
  69. Hummel A.S., Hertel C., Holzapfel W.H., Franz C.M.A., Antibiotic resistances of starter and probiotic strains of lactic acid bacteria, Appl. Environ. Microbiol. 73 (2007) 730–739 [CrossRef] [PubMed].
  70. Huys G., D'Haene K., Collard J.M., Swings J., Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food, Appl. Environ. Microbiol. 70 (2004) 1555–1562 [CrossRef] [PubMed].
  71. Jan G., Rouault A., Maubois J.L., Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. sherrmanii, Lait 80 (2000) 325–336 [CrossRef].
  72. Jayamanne V.S., Adams M.R., Determina-tion of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts, Lett. Appl. Microbiol. 42 (2006) 189–194 [CrossRef] [PubMed].
  73. Kastner S., Perreten V., Bleuler H., Hugenschmidt G., Lacroix C., Meile L., Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food, Syst. Appl. Microbiol. 29 (2006) 145–155 [CrossRef] [PubMed].
  74. Kirkup B.C., Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications, Curr. Med. Chem. 27 (2006) 3335–3350 [CrossRef].
  75. Klaenhammer T.R., Genetics of bacteriocins produced by lactic acid bacteria, FEMS Microbiol. Rev. 12 (1993) 39–85 [PubMed].
  76. Klare I., Konstabel C., Werner G., Huys G., Vankerckhoven V., Kahlmeter G., Hildebrandt B., Müller-Bertling S., Witt W., Goossens H., Antimicrobial susceptibilities of Lactococcus human isolates and cultures intended for probiotic or nutritional use, J. Antimicrob. Chemother. 59 (2007) 900–912 [CrossRef] [PubMed].
  77. Koch S.R., Effects of fermentation conditions on viability, physiological and technological characteristics of autolytic dried direct vat set lactic starter cultures, Ph.D. thesis, 2006, ETH, Zürich, Switzerland.
  78. Lacroix C., Grattepanche F., Doleyres Y., Bergmaier D., Immobilized cell technologies for the dairy industry, in: Nevidovic V., Willaert R. (Eds.), Applications of Cell Immobilization Biotechnology, Series: Focus on Biotechnology, Vol. 8B, Springer-Verlag, Berlin, Germany, pp. 295–319.
  79. Lacroix C., Yildirim S., Fermentation technologies for the production of probiotics with high viability and functionality, Curr. Opin. Biotechnol. 18 (2007) 176–183 [CrossRef] [PubMed].
  80. Lazzi C., Rossetti L., Zago M., Neviani E., Giraffa G., Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR, J. Appl. Microbiol. 96 (2004) 481–490 [CrossRef] [PubMed].
  81. Levy S.B., Marshall B., Antibacterial resistance worldwide: causes, challenges and responses, Nature Med. 10 (2004) 122–129 [CrossRef].
  82. Little C.L., Rhoades J.R., Sagoo S.K., Harris J., Greenwood M., Mithani V., Grant K., McLauchlin J., Microbiological quality of retail cheeses from raw, thermized or pasteurized milk in the UK, Food Microbiol. 25 (2008) 304–312 [CrossRef] [PubMed].
  83. Loessner M., Guenther S., Steffan S., Scherer S., A pediocin-producing Lacto-bacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium, Appl. Environ. Microbiol. 69 (2003) 1854–1857 [CrossRef] [PubMed].
  84. Magnusson J., Schnürer J., Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound, Appl. Environ. Microbiol. 67 (2001) 1–5 [CrossRef] [PubMed].
  85. Maoz A., Mayr R., Scherer S., Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia, Appl. Environ. Microbiol. 69 (2003) 4012–4018 [CrossRef] [PubMed].
  86. Martínez-Cuesta M.C., Peláez C., Juárez M., Requena T., Autolysis of Lactococcus lactis ssp. lactis and Lactobacillus casei ssp. casei. Cell lysis induced by a crude bacteriocin, Int. J. Food Microbiol. 38 (1997) 125–131 [CrossRef] [PubMed].
  87. Martínez-Cuesta M.C., Requena T., Peláez C., Use of a bacteriocin-producing transconjugant as starter in acceleration of cheese ripening, Int. J. Food Microbiol. 70 (2001) 79–88 [CrossRef] [PubMed].
  88. Martínez-Cuesta M.C., Requena T., Peláez C., Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFLP730, Int. J. Food Microbiol. 109 (2006) 1989–204.
  89. Mc Brearty S., Ross R.P., Fitzgerald G.F., Collins J.K., Wallace J.M., Stanton C., Influence of two commercially available bifidobacteria cultures on Cheddar cheese quality, Int. Dairy J. 11 (2001) 599–610 [CrossRef].
  90. Meile L., Le Blay G., Thierry A., Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium, Int. J. Food Microbiol. 126 (2008) 316–320 [CrossRef] [PubMed].
  91. Miescher Schwenninger S., Meile L., A mixed culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei inhibits food spoilage yeasts, Syst. Appl. Microbiol. 27 (2004) 229–237 [CrossRef] [PubMed].
  92. Miescher Schwenninger S., Von Ah U., Niederer B., Teuber M., Meile L., Detection of antifungal properties in Lactobacillus paracasei subsp. paracasei SM20, SM29, and SM63 and molecular typing of the strains, J. Food Prot. 68 (2005) 111–119 [PubMed].
  93. Millet L., Didienne R., Tessier L., Montel M.C., Control of Listeria monocytogenes in raw milk cheeses, Int. J. Food Microbiol. 108 (2006) 105–114 [CrossRef] [PubMed].
  94. Morency H., Mota-Meira M., LaPointe G., Lacroix C., Lavoie M.C., Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic, Can. J. Microbiol. 47 (2001) 322–331 [CrossRef] [PubMed].
  95. Morgan S.M., O'Sullivan L., Ross R.P., Hill C., The design of a three strain starter system for Cheddar cheese manufacture exploiting bacteriocin-induced starter lysis, Int. Dairy J. 12 (2002) 985–993 [CrossRef].
  96. Mounier J., Monnet C., Vallaeys T., Arditi R., Sarthou A.S., Helias A., Irlinger F., Microbial interactions within a cheese microbial community, Appl. Environ. Microbiol. 74 (2008) 172–181 [CrossRef] [PubMed].
  97. Muñoz A., Ananou S., Gálvez A., Martínez-Bueno M., Rodríguez A., Maqueda M., Valdivia E., Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: bactericidal synergism with heat, Int. Dairy J. 17 (2007) 760–769 [CrossRef].
  98. Naghmouchi K., Kheadr E., Lacroix C., Fliss I., Class I/Class IIa bacteriocin cross-resistance phenomenon in Listeria monocytogenes, Food Microbiol. 24 (2007) 718–727 [CrossRef] [PubMed].
  99. Nes I.F., Diep D.B., Holo H., Bacteriocin diversity in Streptococcus and Enterococcus, J. Bacteriol. 189 (2007) 1189–1198 [CrossRef] [PubMed].
  100. Niku-Paavola M.L., Laitila A., Mattila-Sandholm T., Haikara A., New types of antimicrobial compounds produced by Lactobacillus plantarum, J. Appl. Microbiol. 86 (1999) 29–35 [CrossRef] [PubMed].
  101. Nuñez M., Rodríguez J.L., García E., Gaya P., Medina M., Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture and ripening of Manchego cheese, J. Appl. Microbiol. 83 (1997) 617–677.
  102. O'Sullivan L., O'Connor E.B., Ross R.P., Hill C., Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese, J. Appl. Microbiol. 100 (2006) 135–143 [CrossRef] [PubMed].
  103. Ogier J.C., Lafarge V., Girard V., Rault A., Maladen V., Gruss A., Leveau J.Y., Delacroix-Buchet A., Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient gel electrophoresis, Appl. Environ. Microbiol. 70 (2004) 5628–5643 [CrossRef] [PubMed].
  104. Ong L., Henriksson A., Shah N.P., Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acids, Int. Dairy J. 16 (2006) 446–456 [CrossRef].
  105. Ong L., Henriksson A., Shah N.P., Proteolytic pattern and organic acid profiles of probiotic Cheddar cheese as influenced by probiotic strains of Lactobacillus acidophilus, Lb. paracasei, Lb. casei or Bifidobacterium spp., Int. Dairy J. 17 (2007) 67–78 [CrossRef].
  106. Ouwehand A.C., The probiotic potential of propionibacteria, in: Salminen S., von Wright A., Ouwehand A. (Eds.), Lactic Acid Bacteria: Microbiology and Functional Aspects, Marcel Dekker Inc., New-York, USA, 2004, pp. 159–174.
  107. Ouwehand A.C., Salminen S., Isolauri E., Probiotics: an overview of beneficial effects, Antonie van Leeuwenhoek 82 (2002) 279–289 [CrossRef] [PubMed].
  108. Peláez C., Requena T., Exploiting the potential of bacteria in the cheese ecosystem, Int. Dairy J. 15 (2005) 831–844 [CrossRef].
  109. Perreten V., Resistance in the food chain and in bacteria from animals: relevance to human infections, in: White D.G., Alekshun N.V., McDermott P.F. (Eds.), Frontiers in Antibiotic Resistance: A Tribute to Stuart B. Levy, ASM, Washington DC, USA, 2005, pp. 446–464.
  110. Perreten V., Schwarz F., Cresta L., Boeglin M., Dasen G., Teuber M., Antibiotic resistance spread in food, Nature 389 (1997) 801–802 [CrossRef].
  111. Perreten V., Vorlet-Fawer L., Slickers P., Ehricht R., Kuhnert P., Frey J., Microarray-based detection of 90 antibiotic resistance genes of Gram-positive bacteria, J. Clin. Microbiol. 43 (2005) 2291–2302 [CrossRef] [PubMed].
  112. Phillips M., Kailasapathy K., Tran L., Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp., L. paracasei and L. rhamnosus) in Cheddar cheese, Int. J. Food Microbiol. 108 (2006) 276–280 [CrossRef] [PubMed].
  113. Rademaker J.L.W., Peinhopf M., Rijnen L., Bockelmann W., Noordman W.H., The surface microflora dynamics of bacterial smear-ripened Tilsit cheese determined by T-RFLP DNA population fingerprint analysis, Int. Dairy J. 15 (2005) 785–794 [CrossRef].
  114. Randazzo C.L., Torriani S., Akkermans A.D.L., de Vos W.M., Vaughan E.E., Diversity, dynamics, and activity of bacterial communities during production of an artisanal sicilian cheese as evaluated by 16S rRNA analysis, Appl. Environ. Microbiol. 68 (2002) 1882–1892 [CrossRef] [PubMed].
  115. Rodríguez J.M., Martínez M.I., Horn N., Dodd H.M., Heterologous production of bacteriocins by lactic acid bacteria, Int. J. Food Microbiol. 880 (2003) 101–116 [CrossRef].
  116. Rollema H.S., Kuipers O.P., Both P., de Vos W.M., Siezen R.J., Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering, Appl. Environ. Microbiol. 61 (1995) 2873–2878 [PubMed].
  117. Ross P.R., Stanton C., Hill C., Fitzgerald G.F., Coffey A., Novel cultures for cheese improvement, Trends Food Sci. Technol. 11 (2000) 96–104 [CrossRef].
  118. Roy D., Technological aspects related to the use of bifidobacteria in dairy products, Lait 85 (2005) 39–56 [CrossRef].
  119. Ryan M.P., Rea M.C., Hill C., Ross R.P., An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147, Appl. Environ. Microbiol. 62 (1996) 612–619 [PubMed].
  120. Rychlik M., Bosset J.O., Flavour and off-flavour compounds of Swiss Gruyère cheese. Identification of key odorants by quantitative instrumental and sensory studies, Int. Dairy J. 11 (2001) 903–910 [CrossRef].
  121. Salminen S., von Wright A., Morelli L., Marteau P., Brassart D., de Vos W.M., Fondén R., Saxelin M., Collins K., Mogensen G., Birkeland S.E., Mattila-Sandholm T., Demonstration of safety of probiotics – a review, Int. J. Food Microbiol. 44 (1998) 93–106 [CrossRef] [PubMed].
  122. Salyers A.A., Gupta A., Wang Y., Human intestinal bacteria as reservoirs for antibiotic resistance genes, Trends Microbiol. 12 (2004) 412–416 [CrossRef] [PubMed].
  123. Sanders M.E., Walker D.C., Walker K.M., Aoyama K., Klaenhammer T.R., Performance of commercial cultures in fluid milk applications, J. Dairy Sci. 79 (1996) 943–955 [PubMed].
  124. Saubusse M., Millet L., Delbès C., Callon C., Montel M.C., Application of Single Strand Conformation Polymorphism-PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes, Int. J. Food Microbiol. 116 (2007) 126–135 [CrossRef] [PubMed].
  125. Schnürer J., Magnusson J., Antifungal lactic acid bacteria as biopreservatives, Trends Food Sci. Technol. 16 (2005) 70–78 [CrossRef].
  126. Shah N.P., Lankaputhra W.E.V., Britz M.L., Kyle W.S.A., Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage, Int. Dairy J. 5 (1995) 515–521 [CrossRef].
  127. Sjögren, J., Magnusson J., Broberg A., Schnürer J., Kenne L., Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14, Appl. Environ. Microbiol. 69 (2003) 7554–7557 [CrossRef] [PubMed].
  128. Smit G., Smit B.A., Engels W.J.M., Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products, FEMS Microbiol. Rev. 29 (2005) 591–610 [CrossRef] [PubMed].
  129. Smits G.J., Brul S., Stress tolerance in fungi – to kill a spoilage yeast, Curr. Opin. Biotechnol. 16 (2005) 225–230 [CrossRef] [PubMed].
  130. Sobrino-López A., Martín-Belloso O., Use of nisin and other bacteriocins for preservation of dairy products, Int. Dairy J. 18 (2008) 329–343 [CrossRef].
  131. Sousa M.J., Ardö Y., McSweeney P.L.H., Advances in the study of proteolysis during cheese ripening, Int. Dairy J. 11 (2001) 327–345 [CrossRef].
  132. Ström K., Sjögren J., Broberg A., Schnürer J., Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid, Appl. Environ. Microbiol. 68 (2002) 4322–4327 [CrossRef] [PubMed].
  133. Suomalainen T.H., Mäyra-Mäkinen A.M., Propionic acid bacteria as protective cultures in fermented milks and breads, Lait 79 (1999) 165–174 [CrossRef].
  134. Talwalkar A., Kailasapathy K., The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp., Curr. Issues Intest. Microbiol. 5 (2004) 1–8 [PubMed].
  135. Teuber M., Meile L., Schwarz F., Acquired antibiotic resistance in lactic acid bacteria from food, Antonie van Leeuwenhoek 76 (1999) 115–137 [CrossRef] [PubMed].
  136. Tosi L., Berruti G., Danielsen M., Wind A., Huys G., Morelli L., Susceptibility of Streptococcus thermophilus to antibiotics, Antonie Van Leeuwenhoek 92 (2007) 21–28 [CrossRef] [PubMed].
  137. Tsakalidou E., Zoidou E., Pot B., Wassill L., Ludwig W., Devriese L.A., Kalantzopoulos G., Schleifer K.H., Kersters K., Identification of streptococci from Greek Kasseri cheese and description of Streptococcus macedonicus sp. nov., Int. J. Syst. Bacteriol. 48 (1998) 519–527 [PubMed].
  138. Van den Berghe E., Skourtas G., Tsakalidou E., De Vuyst L., Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture, Int. J. Food Microbiol. 107 (2006) 138–147 [CrossRef] [PubMed].
  139. Vinderola C.G., Prosello W., Ghilberto D., Reinheimer J.A., Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese, J. Dairy Sci. 83 (2000) 1905–1911 [PubMed].
  140. Yang Z., Suomalainen T., Mäyrä-Mäkinen A., Huttunen E., Antimicrobial activity of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria, J. Food Prot. 60 (1997) 786–790.
  141. Yilmaztekin M., Ozer B.H., Atasoy F., Survival of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-02 in white brined cheese, Int. J. Food Sci. Nutr. 55 (2004) 53–60 [CrossRef] [PubMed].