Free Access
Issue
Dairy Sci. Technol.
Volume 89, Number 2, March-April 2009
Page(s) 125 - 137
DOI https://doi.org/10.1051/dst/2009001
Published online 21 February 2009
  1. Andersen P.S., Jansen P.J., Hammer K., Two different dihydroorotate dehydrogenases in Lactococcus lactis, J. Bacteriol. 176 (1994) 3975–3982. [PubMed] [Google Scholar]
  2. Andersen P.S., Martinussen J., Hammer K., Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis, J. Bacteriol. 178 (1996) 5005–5012. [PubMed] [Google Scholar]
  3. Defoor E., Kryger M.B., Martinussen J., The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker, Microbiology 153 (2007) 3645–3659. [CrossRef] [PubMed] [Google Scholar]
  4. Dickely F., Nilsson D., Hansen E.B., Johansen E., Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector, Mol. Microbiol. 15 (1995) 839–847. [CrossRef] [PubMed] [Google Scholar]
  5. Efstathiou J.D., McKay L.L., Inorganic salts resistance associated with a lactose-fermenting plasmid in Streptococcus lactis, J. Bacteriol. 130 (1977) 257–265. [PubMed] [Google Scholar]
  6. Gasson M.J., Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing, J. Bacteriol. 154 (1983) 1–9. [PubMed] [Google Scholar]
  7. Holo H.N.I.F., High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media, Appl. Environ. Microbiol. 55 (1989) 3119–3123. [Google Scholar]
  8. Jensen P.R., Hammer K., Minimal requirements for exponential growth of Lactococcus lactis, Appl. Environ. Microbiol. 59 (1993) 4363–4366. [PubMed] [Google Scholar]
  9. Johansen E., Kibenich A., Characterization of Leuconostoc isolates from commercial mixed strain mesophilic starter cultures, J. Dairy Sci. 75 (1992) 1186–1191. [CrossRef] [Google Scholar]
  10. Kilstrup M., Hammer K., Jensen P.R., Martinussen J., Nucleotide metabolism and its control in lactic acid bacteria, FEMS Microbiol. Rev. 29 (2005) 555–590. [CrossRef] [PubMed] [Google Scholar]
  11. Lowry O., Rosebrough N., Farr A., Randall R., Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275. [PubMed] [Google Scholar]
  12. Maguin E., Prévost H., Ehrlich S.D., Gruss A., Efficient insertional mutagenesis in lactococci and other gram-positive bacteria, J. Bacteriol. 178 (1996) 931–935. [PubMed] [Google Scholar]
  13. Martinussen J., Andersen P.S., Hammer K., Nucleotide metabolism in Lactococcus lactis: salvage pathways of exogenous pyrimidines, J. Bacteriol. 176 (1994) 1514–1516. [PubMed] [Google Scholar]
  14. Martinussen J., Hammer K., Powerful methods to establish chromosomal markers in Lactococcus lactis – an analysis of pyrimidine salvage pathway mutants obtained by positive selections, Microbiology-UK 141 (1995) 1883–1890. [CrossRef] [Google Scholar]
  15. Martinussen J., Hammer K., The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically, J. Bacteriol. 180 (1998) 4380–4386. [PubMed] [Google Scholar]
  16. Martinussen J., Schallert J., Andersen B., Hammer K., The pyrimidine operon pyrRPB-carA from Lactococcus lactis, J. Bacteriol. 183 (2001) 2785–2794. [CrossRef] [PubMed] [Google Scholar]
  17. Martinussen J., Wadskov-Hansen S.L., Hammer K., Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools, J. Bacteriol. 185 (2003) 1503–1508. [CrossRef] [PubMed] [Google Scholar]
  18. Neuhard J., Kelln R., Biosynthesis and conversions of pyrimidines, in: Neidhardt F.C., Curtiss III R., Ingraham J.L., Linn E.C., Low K.B., Magasanik B., Reznikoff W.S., Riley M., Schaechter M., Umbarger H.E. (Eds.), Escherichia coli and Salmonella: Cellular and Molecular Biology, American Society for Microbiology, Washington DC, USA, 1996, pp. 580–599. [Google Scholar]
  19. Prescott L.M., Jones M.E., Modified methods for the determination of carbamyl aspartate, Anal. Biochem. 32 (1969) 408–419. [CrossRef] [PubMed] [Google Scholar]
  20. Sambrook J., Fritsch E.F., Maniatis T., Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, New York, USA, 1989. [Google Scholar]
  21. Simon D., Chopin A., Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis, Biochimie 70 (1988) 559–566. [CrossRef] [PubMed] [Google Scholar]
  22. Terzaghi B.E., Sandine W.E., Improved medium for lactic streptococci and their bacteriophages, Appl. Environ. Microbiol. 29 (1975) 807–813. [Google Scholar]
  23. Turnbough C.L.J., Bochner B.R., Toxicity of the pyrimidine biosynthetic pathway intermediate carbamyl aspartate in Salmonella typhimurium, J. Bacteriol. 163 (1985) 500–505. [PubMed] [Google Scholar]
  24. Vieira J., Messing J., The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers, Gene 19 (1982) 259–268. [CrossRef] [PubMed] [Google Scholar]