Free Access
Issue
Dairy Sci. Technol.
Volume 90, Number 6, November–December 2010
Page(s) 729 - 740
DOI https://doi.org/10.1051/dst/2010030
Published online 02 August 2010
  1. Baddiley J., Mechanism and control of cell wall synthesis in bacteria, Pure Appl. Chem. 42 (1975) 417–429. [CrossRef]
  2. Bolognani F., Rumney C.J., Rowland R., Influence of carcinogen binding by lactic acid producing bacteria on tissue distribution and in vivo mutagenicity of dietary carcinogens, Food Chem. Toxicol. 35 (1997) 535–545. [CrossRef] [PubMed]
  3. Chapot B., Wild C.P., ELISA for quantification of aflatoxin-albumin adducts and their application to human exposure assessment, in: Van-Warhol M., Velzen D., Bullock G.R. (Eds.), Techniques in Diagnostic Pathology, Academic Press, New York, USA, 1991, pp. 135–155.
  4. Doyle R.J., McDannel M.L., Streips U.N., Birdsell D.C., Young F.E., Polyelectrolyte nature of bacterial teichoic acids, J. Bacteriol. 118 (1974) 606–615. [PubMed]
  5. El-Nezami H., Kankaanpää P., Salminen S., Ahokas J., Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1, Food Chem. Toxicol. 36 (1998) 321–326. [CrossRef] [PubMed]
  6. El-Nezami H., Kannkaanpää P., Salminen S., Ahokas J., Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media, J. Food Prot. 61 (1998) 466–468. [PubMed]
  7. El-Nezami H., Mykkanen H., Kankaanpää P., Salminen S., Ahokas J., Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum, J. Food Prot. 63 (2000) 549–552. [PubMed]
  8. Goldman R.D., Antibodies: indispensable tools for biomedical research, Trends Biochem. Sci. 25 (2000) 593–595. [CrossRef] [PubMed]
  9. Gratz S., Taubel M., Juvonen R.O., Viluksela M., Turner P.C., Mykkanen H., El-Nezami H., Lactobacillus rhamnosus strain GG modulates intestinal absorption, fecal excretion, and toxicity of aflatoxin B1 in rats, Appl. Environ. Microbiol. 72 (2006) 7398–7400. [CrossRef] [PubMed]
  10. Gratz S., Wu Q.K., El-Nezami H., Juvonen R.O., Mykkanen H., Turner P.C., Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells, Appl. Environ. Microbiol. 73 (2007) 3958–3964. [CrossRef] [PubMed]
  11. Groopman J.D., Kensler T.W., Wild C.P., Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries, Annu. Rev. Public Health 29 (2008) 187–203. [CrossRef] [PubMed]
  12. Guan S., Ji C., Zhou T., Li J., Ma Q., Niu T., Aflatoxin B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium, Int. J. Mol. Sci. 9 (2008) 1489–1503. [CrossRef] [PubMed]
  13. Haskard C.A., El-Nezami H.S., Kankaanpää P.E., Salminen S., Ahokas J.T., Surface binding of aflatoxin B1 by lactic acid bacteria, Appl. Environ. Microbiol. 67 (2001) 3086–3091. [CrossRef] [PubMed]
  14. Hayes J.D., Chanas S.A., Henderson C.J., McMahon M., Sun C., Moffat G.J., Wolf C.R., Yamamoto M., The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin, Biochem. Soc. Trans. 28 (2000) 33–41. [PubMed]
  15. Hernandez-Mendoza A., Garcia H.S., Steele J.L., Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1, Food Chem. Toxicol. 47 (2009) 1064–1068. [CrossRef] [PubMed]
  16. Hernandez-Mendoza A., Guzman-de-Pena D., Garcia H.S., Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria, J. Appl. Microbiol. 107 (2009) 395–403. [CrossRef] [PubMed]
  17. IACUC, Guideline of Selected Techniques for Rat and Mouse Blood Collection, Guideline 9, USA, 1999.
  18. Kandler O., Weiss N., Genus Lactobacillus, in: Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. (Eds.), Bergey’s Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore, London, Los Angeles, 1984.
  19. Kankaanpää P., Tuomola E., El-Nezami H., Ahokas J., Salminen S.J., Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model, J. Food Prot. 63 (2000) 412–414. [PubMed]
  20. Kusser W., Zimmer K., Fiedler F., Characteristics of the binding of aminoglycoside antibiotics to teichoic acids. A potential model system for interaction of aminoglycosides with polyanions, Eur. J. Biochem. 151 (1985) 601–605. [CrossRef] [PubMed]
  21. Lahtinen S.J., Haskard C.A., Ouwehand A.C., Salminen S.J., Ahokas J.T., Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG, Food Addit. Contam. 21 (2004) 158–164. [CrossRef] [PubMed]
  22. Lee Y.K., Ho P.S., Low C.S., Arvilommi H., Salminen S., Permanent colonization by Lactobacillus casei is hindered by the low rate of cell division in mouse gut, Appl. Environ. Microbiol. 70 (2004) 670–674. [CrossRef] [PubMed]
  23. Molly K., De Smet I., Nolet L., Vande Woestyne M., Verstraete W., Effect of Lactobacilli on the ecology of the microbiota cultured in the SHIME reactor, Microb. Ecol. Health Dis. 9 (1996) 79–89. [CrossRef]
  24. Murugavel K.G., Naranatt P.P., Shankar E.M., Mathews S., Raghuram K., Rajasambandam P., Jayanthi V., Surendran R., Murali A., Srinivas U., Palaniswamy K.R., Srikumari D., Thyagarajan S.P., Prevalence of aflatoxin B1 in liver biopsies of proven hepatocellular carcinoma in India determined by an in-house immunoperoxidase test, J. Med. Microbiol. 56 (2007) 1455–1459. [CrossRef] [PubMed]
  25. Navarre W.W., Schneewind O., Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope, Microbiol. Mol. Biol. Rev. 63 (1999) 174–229. [PubMed]
  26. Orrhage K.M., Annas A., Nord C.E., Brittebo E.B., Rafter J.J., Effects of lactic acid bacteria on the uptake and distribution of the food mutagen Trp-P-2 in mice, Scand. J. Gastroenterol. 37 (2002) 215–221. [CrossRef] [PubMed]
  27. Park S., Hwang M., Kim Y., Kim J., Song J., Lee K., Jeong K., Rhee M., Kim K., Kim T., Comparison of pH and bile resistance of Lactobacillus acidophilus strains isolated from rat, pig, chicken, and human sources, World J. Microbiol. Biotechnol. 22 (2006) 35–37. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  28. Phillips T.D., Dietary clay in the chemoprevention of aflatoxin-induced disease, Toxicol. Sci. 52 (1999) 118–126. [PubMed]
  29. Pringle J.R., Preston R.A., Adams A.E., Stearns T., Drubin D.G., Haarer B.K., Jones E.W., Fluorescence microscopy methods for yeast, Methods Cell Biol. 31 (1989) 357–435. [CrossRef] [PubMed]
  30. Sara M., Conserved anchoring mechanisms between crystalline cell surface S-layer proteins and secondary cell wall polymers in Gram-positive bacteria?, Trends Microbiol. 9 (2001) 47–49. [CrossRef] [PubMed]
  31. Schar-Zammaretti P., Ubbink J., The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations, Biophys J. 85 (2003) 4076–4092. [CrossRef] [PubMed]
  32. Shetty P.H., Jespersen L., Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents, Trends Food Sci. Technol. 17 (2006) 48–55. [CrossRef]
  33. Strosnider H., Azziz-Baumgartner E., Banziger M., Bhat R.V., Breiman R., Brune M.N., DeCock K., Dilley A., Groopman J., Hell K., Henry S.H., Jeffers D., Jolly C., Jolly P., Kibata G.N., Lewis L., Liu X., Luber G., McCoy L., Mensah P., Miraglia M., Misore A., Njapau H., Ong C.N., Onsongo M.T., Page S.W., Park D., Patel M., Phillips T., Pineiro M., Pronczuk J., Rogers H.S., Rubin C., Sabino M., Schaafsma A., Shephard G., Stroka J., Wild C., Williams J.T., Wilson D., Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries, Environ. Health Perspect. 114 (2006) 1898–1903. [PubMed]
  34. Tuohy K.M., Pinart-Gilberga M., Jones M., Hoyles L., McCartney A.L., Gibson G.R., Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora, J. Appl. Microbiol. 102 (2007) 1026–1032. [PubMed]
  35. Turbic A., Ahokas T., Haskard C.A., Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria, Food Addit. Contam. 19 (2002) 144–152. [CrossRef]
  36. Umeda A., Saito M., Amako K., Surface characteristics of Gram-negative and Gram-positive bacteria in an atomic force microscope image, Microbiol. Immunol. 42 (1998) 159–164. [PubMed]
  37. Vinderola C.G., Ballo N., Reinheimer J.A., Survival of probiotic microflora in Argentinian yoghurts during refrigerated storage, Food Res. Int. 33 (2000) 97–102. [CrossRef]
  38. Williams J.H., Phillips T.D., Jolly P.E., Stiles J.K., Jolly C.M., Aggarwal D., Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions, Am. J. Clin. Nutr. 80 (2004) 1106–1122. [PubMed]
  39. Willingham M.C., Fluorescence labeling of surface antigens of attached or suspended tissue-culture cells, in: Javols L.C. (Ed.), Methods in Molecular Biology, Human Press Inc., Totowa, USA, 1994, pp. 113–119.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.