Free Access
Issue
Dairy Sci. Technol.
Volume 90, Number 4, July–August 2010
Special Issue: Selection of papers from the 4th International Dairy Federation Dairy Science and Technology Week,
21-25 April 2009, Rennes, France
Page(s) 399 - 412
DOI https://doi.org/10.1051/dst/2010020
Published online 30 March 2010
  1. Bachem C.W., van der Hoeven R.S., de Bruijn S.M., Vreugdenhil D., Zabeau M., Visser R.G., Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development, Plant J. 9 (1996) 745–753. [CrossRef] [PubMed]
  2. Bauer D., Muller H., Reich J., Riedel H., Ahrenkiel V., Warthoe P., Strauss M., Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR), Nucleic Acids Res. 21 (1993) 4272–4280. [CrossRef] [PubMed]
  3. Birlouez-Aragon I., Sabat P., Gouti N., A new method for discriminating milk heat treatment, Int. Dairy J. 12 (2002) 52–57.
  4. Crump D., Chiu S., Trudeau V.L., Kennedy S.W., Fluorescent RNA arbitrarily primed polymerase chain reaction. A new differential display approach to detect contaminant-induced alterations of gene expression in wildlife species, in: Cristofre Martin C. (Ed.), Methods in Molecular Biology: Environmental Genomics, Vol. 410, Humana Press Inc., Totowa, USA, 2008, pp. 15–27. [CrossRef]
  5. Enfors S.O., Molin G., Effect of high concentrations of carbon dioxide on growth rate of Pseudomonas fragi, Bacillus cereus and Streptococcus cremoris, J. Appl. Bacteriol. 48 (1980) 409–416. [PubMed]
  6. Gill C.O., Tan K.H., Effect of carbon dioxide on growth of Pseudomonas fluorescens, Appl. Environ. Microbiol. 38 (1979) 237–240. [PubMed]
  7. Hon S.I., Pyun Y.R., Membrane damage and enzyme inactivation of Lactobacillus plantarum by high pressure CO2 treatment, Int. J. Food Microbiol. 63 (2001) 19–28. [CrossRef] [PubMed]
  8. Jones S.W., Cai D., Weislow O.S., Esmaeli-Azad B., Generation of multiple mRNA fingerprints using fluorescence-based differential display and an automated DNA sequencer, Biotechniques 22 (1997) 536–543. [PubMed]
  9. King J.S., Mabbitt L.A., Preservation of raw milk by addition of carbon dioxide, J. Dairy Res. 49 (1982) 439–447. [CrossRef]
  10. Liang P., Pardee A.B., Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science 257 (1992) 967–971. [CrossRef] [PubMed]
  11. Luehrsen K.R., Marr L.L., van der Knaap E., Cumberledge S., Analysis of differential display RT-PCR products using fluorescent primers and GENESCAN software, Biotechniques 22 (1997) 168–174. [PubMed]
  12. Ma Y., Barbano D.M., Effect of temperature of CO2 injection on the pH and freezing point of milks and creams, J. Dairy Sci. 86 (2003) 1578–1589. [CrossRef] [PubMed]
  13. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V., Polouchine N., Shakhova V., Grigoriev I., Lou Y., Rohksar D., Lucas S., Huang K., Goodstein D.M., Hawkins T., Plengvidhya V., Welker D., Hughes J., Goh Y., Benson A., Baldwin K., Lee J.H., Diaz-Muniz I., Dosti B., Smeianov V., Wechter W., Barabote R., Lorca G., Altermann E., Barrangou R., Ganesan B., Xie Y., Rawsthorne H., Tamir D., Parker C., Breidt F., Broadbent J., Hutkins R., O’Sullivan D., Steele J., Unlu G., Saier M., Klaenhammer T., Richardson P., Kozyavkin S., Weimer B., Mills D., Comparative genomics of the lactic acid bacteria, Proc. Natl. Acad. Sci. USA 103 (2006) 15611–15616. [CrossRef]
  14. Martin J.D., Werner B.G., Hotchkiss J.H., Effects of carbon dioxide on bacterial growth parameters in milk as measured by conductivity, J. Dairy Sci. 86 (2003) 1932–1940. [CrossRef] [PubMed]
  15. Meade J.D., Cho Y.J., Fisher J.S., Walden J.C., Guo Z., Liang P., Automation of fluorescent differential display with digital readout, in: Liang P., Meade J.D., Pardee A.B. (Eds.), Methods in Molecular Biology: Differential Display Methods and Protocols, Vol. 317, Humana Press Inc., Totowa, USA, 2006, pp. 23–57. [CrossRef]
  16. Meyer D.H., Kunin A.S., Maddalena J., Meyer W.L., Ribonuclease activity and isoenzymes in raw and processed cows’ milk and infant formulas, J. Dairy Res. 70 (1987) 1797–1803.
  17. Molin G., Effect of carbon dioxide on growth of Pseudomonas putida ATCC 11172 on asparagine, citrate, glucose, and lactate in batch and continuous culture, Can. J. Microbiol. 31 (1985) 763–766. [CrossRef] [PubMed]
  18. Nielsen E.W., Principles of cheese production, in: Hui Y., Meunier-Goddik L., Hansen A., Josephsen J., Nip W.-K., Stanfield P., Toldrá F. (Eds.), Handbook of Food and Beverage Fermentation Technology, Marcel Dekker, New York, USA, 2004, pp. 219–239.
  19. Pearce L.E., Activity tests for cheese starter cultures, New Zealand, J. Dairy Technol. 4 (1969) 246–247.
  20. Pedersen P.J., Microfiltration for the reduction of bacteria in milk and brine, new applications of membrane processes, Int. Dairy Fed. Special Issue No. 9201 (1992) 33–50.
  21. Posati L.P., Orr M.L., Composition of foods: dairy and egg products; raw, processed, prepared, Agriculture Handbook No. 8-1, Agricultural Research Service, USDA, Washington, USA, 1976.
  22. Roberts R.F., Torrey G.S., Inhibition of psychrotrophic bacterial growth in refrigerated milk by addition of carbon dioxide, J. Dairy Sci. 71 (1988) 52–60. [CrossRef]
  23. Rowe M.T., Effect of carbon dioxide on growth and extracellular enzyme production by Pseudomonas fluorescens B52, Int. J. Food Microbiol. 6 (1988) 51–56. [CrossRef] [PubMed]
  24. Saeed A.I., Sharov V., White J., Li J., Liang W., Bhagabati N., Braisted J., Klapa M., Currier T., Thiagarajan M., Sturn A., Snuffin M., Rezantsev A., Popov D., Ryltsov A., Kostukovich E., Borisovsky I., Liu Z., Vinsavich A., Trush V., Quackenbush J., TM4: a free open-source system for microarray data management and analysis, Biotechniques 34 (2003) 374–378. [PubMed]
  25. Scaloni A., Perillo V., Franco P., Fedele E., Froio R., Ferrara L., Bergamo P., Characterization of heat-induced lactosylation products in caseins by immunoenzymatic and mass spectrometric methodologies, Biochim. Biophys. Acta 1598 (2002) 30–39. [PubMed]
  26. Schena M., Shalon D., Davis R.W., Brown P.O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270 (1995) 467–470. [CrossRef] [PubMed]
  27. Sturtevant J., Applications of differential-display reverse transcription-PCR to molecular pathogenesis and medical mycology, Clin. Microbiol. Rev. 13 (2000) 408–427. [CrossRef] [PubMed]
  28. Walstra P., Wouters J.T.M., Geurts T.J., Dairy Science and Technology, CRC Press, Boca Raton, USA, 2006.
  29. Welsh J., Chada K., Dalal S.S., Cheng R., Ralph D., McClelland M., Arbitrarily primed PCR fingerprinting of RNA, Nucleic Acids Res. 20 (1992) 4965–4970. [CrossRef] [PubMed]
  30. Welsh J., McClelland M., Fingerprinting genomes using PCR with arbitrary primers, Nucleic Acids Res. 18 (1990) 7213–7218. [CrossRef] [PubMed]
  31. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., Tingey S.V., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Res. 18 (1990) 6531–6535. [CrossRef] [PubMed]
  32. Wong K.K., McClelland M., Stress-inducible gene of Salmonella typhimurium identified by arbitrarily primed PCR of RNA, Proc. Natl. Acad. Sci. USA 91 (1994) 639–643. [CrossRef]
  33. Xia X., Xie Z., AMADA: analysis of microarray data, Bioinformatics 17 (2001) 569–570. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.