Free Access
Issue
Dairy Sci. Technol.
Volume 89, Number 6, November-December 2009
Page(s) 583 - 600
DOI https://doi.org/10.1051/dst/2009039
Published online 28 October 2009
References of  Dairy Sci. Technol. 89 (2009) 583–600
  1. Amatayakul T., Halmos A.L., Sherkat F., Shah N.P., Physical characteristics of yogurts made using exopolysaccharide-producing starter cultures and varying casein to whey protein ratios, Int. Dairy J. 16 (2006) 40–51 [CrossRef].
  2. Bot A., Erle U., Vreeker R., Agterof W.G.M., Influence of crystallisation conditions on the large deformation rheology of inulin gels, Food Hydrocoll. 18 (2004) 556–574.
  3. Church F.C., Swaisgood H.E., Porter D.H., Catignani G.L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins, J. Dairy Sci. 66 (1983) 1219–1227.
  4. Cushman D.W., Cheung H.S., Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung, Biochem. Pharmacol. 20 (1971) 1637–1648 [CrossRef].
  5. Dave R.I., Shah N.P., Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria, J. Dairy Sci. 79 (1996) 1529–1536 [PubMed].
  6. De Vuyst L., Zamfir M., Mozzi F., Adriany T., Marshall V., Degeest B., Vaningelgem F., Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks, Int. Dairy J. 13 (2003) 707–717 [CrossRef].
  7. Degeest B., Mozzi F., De Vuyst L., Effect of medium composition and temperature and pH changes on the exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentation, J. Food Microbiol. 79 (2002) 161–174 [CrossRef].
  8. Dello Staffolo M., Bertola N., Martino M., Bevilacqua A., Influence of dietary fiber addition on sensory and rheological properties of yogurt, Int. Dairy J. 14 (2004) 263–268 [CrossRef].
  9. Doleyres Y., Schaub L., Lacroix C., Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties, J. Dairy Sci. 88 (2005) 4146–4156 [PubMed].
  10. Folkenberg D.M., Dejmek P., Skriver A., Guldager H.S., Ipsen R., Sensory and rheological screening of exopolysaccharide producing strains of bacterial yogurt cultures, Int. Dairy J. 16 (2006) 111–118 [CrossRef].
  11. Fuglsang A., Rattray F.P., Nilsson D., Nyborg N.C.B., Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo, Antonie van Leeuwenhoek 83 (2003) 27–34 [CrossRef] [PubMed].
  12. Gassem M.A., Frank J.F., Physical properties of yogurt made from milk treated with proteolytic enzymes, J. Dairy Sci. 74 (1991) 1503–1511.
  13. Girard M., Schaffer-Lequart C., Attractive interactions between selected anionic exopolysaccharides and milk proteins, Food Hydrocoll. 22 (2008) 1425–1434 [CrossRef].
  14. Gobetti M., Minervini F., Grizzello C., Angiotensin converting enzyme-inhibitory and antimicrobial peptides, Int. Dairy J. 14 (2004) 1075–1080 [CrossRef].
  15. Guven M., Yasar K., Karaca O.B., Hayaloglu A.A., The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacture, Int. J. Dairy Technol. 58 (2005) 180–184 [CrossRef].
  16. Guzel-Seydim Z.B., Sezgin E., Seydim A.C., Influences of exopolysaccharide producing cultures on the quality of plain set type yogurt, Food Control 16 (2005) 205–209 [CrossRef].
  17. Hassan A.N., Frank J.F., Schmidt K.A., Shalabi S.I., Formation of yogurt microstructure and three-dimensional visualization as determined by confocal scanning laser microscopy, J. Dairy Sci. 78 (1995) 2629–2636.
  18. Hess S.J., Roberts R.F., Ziegler G.R., Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems, J. Dairy Sci. 80 (1997) 252–263.
  19. Kip P., Meyer D., Jellema R.H., Inulins improve sensoric and textural properties of low-fat yogurts, Int. Dairy J. 16 (2006) 1098–1103 [CrossRef].
  20. Koksoy A., Kilic M., Use of hydrocolloids in textural stabilization of a yogurt drink, ayran, Food Hydrocoll. 18 (2004) 593–600 [CrossRef].
  21. López-Fandiño R., Otte J., van Camp J., Physiological, chemical and technological aspects of milk-protein derived peptides with antihypertensive and ACE-inhibitory activity, Int. Dairy J. 16 (2006) 1277–1293 [CrossRef].
  22. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin-Phenol reagent, J. Biol. Chem. 193 (1951) 265–275 [PubMed].
  23. Lucey J.A., Cultured dairy products: an overview of their gelation and texture properties, Int. J. Dairy Technol. 57 (2004) 77–84 [CrossRef].
  24. Lucey J.A., Tamehana M., Singh H., Munro P.A., A comparison of the formation, theological properties and microstructure of acid skim milk gels made with bacterial cultures or glucono-$\delta$-lactone, Food Res. Int. 31 (1998) 147–155 [CrossRef].
  25. Purwandari U., Shah N.P., Vasiljevic T., Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yogurt, Int. Dairy J. 17 (2007) 1344–1352 [CrossRef].
  26. Ramchandran L., Shah N.P., Proteolytic profiles, and angiotensin-I converting enzyme and $\alpha$-glucosidase inhibitory activities of selected lactic acid bacteria, J. Food Sci. 73 (2008) M75–M81 [CrossRef] [PubMed].
  27. Ramchandran L., Shah N.P., Growth, proteolytic and ACE–I activities of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus and rheological properties of low fat yogurt as influenced by the addition of Raftiline HP®, J. Food Sci. 73 (2008) M368–M374 [CrossRef] [PubMed].
  28. Ramchandran L., Shah N.P., Effect of EPS on the proteolytic and ACE-inhibitory activities and textural and rheological properties of low-fat yogurt during refrigerated storage, J. Dairy Sci. 92 (2009) 895–906 [CrossRef] [PubMed].
  29. Ruas-Madiedo P., Hugenholtz J., Zoon P., An overview of the functionality of exopolysaccharides produced by lactic acid bacteria, Int. Dairy J. 12 (2002) 163–171 [CrossRef].
  30. SAS, SAS/STAT Software, Changes and enhancement through release, SAS Institute Inc., Cary, USA, 1996.
  31. Sebastiani H., Zelger G., Texture formation by thermophilic lactic acid bacteria, Milchwissenschaft 53 (1998) 15–20.
  32. Shihata A., Shah N.P., Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp. bulgaricus to commercial ABT starter cultures on texture of yogurt, exopolysaccharide production and survival of bacteria, Int. Dairy J. 12 (2002) 765–772 [CrossRef].
  33. Sodini I., Remeuf F., Haddad S., Corrieu G., The relative effect of milk base starter, and process on yogurt texture: a review, Crit. Rev. Food Sci. Technol. 44 (2004) 113–137 [CrossRef].
  34. Tinson W., Broome M.C., Hillier A.J., Jago G.R., Metabolism of Streptococcus thermophilus. 2. Production of CO2 and NH3 from urea, Aust. J. Dairy Technol. 37 (1982) 14–16.
  35. Zhang J.-F., Zheng Y.-G., Shen Y.-C., Inhibitory effect of valienamine on the enzymatic activity of honeybee (Apis cerana Fabr.) $\alpha$-glucosidase, Pest. Biochem. Physiol. 87 (2007) 73–77 [CrossRef].
  36. Zisu B., Shah N.P., Effects of pH, temperature, supplementation with whey protein concentrate and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275, J. Dairy Sci. 86 (2003) 3405–3415 [PubMed].

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.