Free Access
Issue
Dairy Sci. Technol.
Volume 89, Number 3-4, May-August 2009
1st IDF/INRA International Symposium on Minerals and Dairy Products
Page(s) 283 - 299
DOI https://doi.org/10.1051/dst/2009008
Published online 24 March 2009
References of  Dairy Sci. Technol. 89 (2009) 283–299
  1. Csapo J., The influence of proteins on the solubility of calcium phosphate, J. Biol. Chem. 75 (1927) 509–515.
  2. Da Costa C.P., Okruszek A., Sigel H., Complex formation of divalent metal ions with uridine 5$^\prime$-O-thiomonophosphate or methyl thiophosphate: comparison of complex stabilities with those of the parent phosphate ligands, ChemBioChem 4 (2003) 593–602 [CrossRef] [PubMed].
  3. Davies C.W., Ion Association, Butterworths, London, UK, 1962.
  4. Gaucheron F., The minerals of milk, Reprod. Nutr. Dev. 45 (2005) 473–483 [CrossRef] [PubMed] [EDP Sciences].
  5. Hurrell R.F., Influence of vegetable protein sources on trace element and mineral bioavailability, J. Nutr. 133 (2003) 2973–2977.
  6. Kies A.K., Jonge de L.H., Kemme P.A., Jongbloed A.W., Interaction between protein, phytate, and microbial phytase. In vitro studies, J. Agric. Food Chem. 54 (2006) 1753–1758 [CrossRef] [PubMed].
  7. Klevichis C., Grisham C.M., Phosphatemetal ion interactions of nucleotides and polynucleotides, Met. Ions Biol. Syst. 32 (1996) 1–26.
  8. Lide D.R., Handbook of Chemistry and Physics, CRC press, New York, USA, 1997.
  9. Lomozik L., Jastrzab R., Non-covalent and coordination interactions in Cu(II) systems with uridine, uridine 5$^\prime$-monophosphate, and triamine or tetramine as biogenic amine analogues in aqueous solutions, J. Inorg. Biochem. 97 (2003) 179–190 [CrossRef] [PubMed].
  10. Lomozik L., Jastrzab R., Copper(II) complexes with uridine, uridine 5$^\prime$-monophosphate, spermidine, or spermine in aqueous solution, J. Inorg. Biochem. 93 (2003) 132–140 [CrossRef] [PubMed].
  11. Lyklema J., Fundamentals of interface and colloid science. Volume I: Fundamentals, Academic press Ltd., London, UK, 1995.
  12. Martin C.J., Evans W.J., Phytic acid-metal ion interactions. II. The effect of pH on Ca (II) binding, J. Inorg. Biochem. 27 (1986) 17–30 [CrossRef] [PubMed].
  13. Massoud S.S., Sigel H., Metal ion coordinating properties of pyrimidine-nucleoside 5$^\prime$-monophosphate (CMP, UMP, TMP) and of simple phosphate monoesters, including D-ribose 5$^\prime$-monophosphate. Establishment of relations between complex stability and phosphate basicity, Inorg. Chem. 27 (1988) 1447–1453 [CrossRef].
  14. Mizuno R., Lucey J.A., Effects of emulsifying salts on the turbidity and calciumphosphate- protein interactions in casein micelles, J. Dairy Sci. 88 (2005) 3070–3078 [PubMed].
  15. Odagiri S., Nickerson T.A., Complexing of calcium by hexametaphosphate, oxalate, citrate, and EDTA in milk. I. Effects of complexing agents of turbidity and rennet coagulation, J. Dairy Sci. 47 (1964) 1306–1309.
  16. Odagiri S., Nickerson T.A., Chain length determination of polyphosphates, J. Dairy Sci. 47 (1964) 920–921.
  17. Odagiri S., Nickerson T.A., Complexing of calcium by hexametaphosphate oxalate, citrate and ethylenediamine-tetraacetate in milk. II. Dialysis of milk containing complexing agents, J. Dairy Sci. 48 (1965) 19–22 [PubMed].
  18. Panouillé M., Nicolai T., Durand D., Heat induced aggregation and gelation of casein submicelles, Int. Dairy J. 14 (2004) 297–303 [CrossRef].
  19. Perrin C., Meyer L., Mujahid C., Blake C.J., The analysis of 5$^\prime$-nucleotides in infant formulae by HPLC, Food Chem. 74 (2001) 245–253 [CrossRef].
  20. Philippe M., Le Graet Y., Gaucheron F., The effects of different cations on the physicochemical characteristics of casein micelles, Food Chem. 90 (2005) 673–683 [CrossRef].
  21. Ping Zhang Z., Aoki T., Behaviour of calcium and phosphate in bovine casein micelles, Int. Dairy J. 6 (1996) 769–780 [CrossRef].
  22. Pyne H.T., The colloidal phosphate of milk, Biochem. J. 28 (1934) 940–948 [PubMed].
  23. Saha A., Saha N., Ji L., Zhao J., Gregan F., Ali S., Sajadi A., Song B., Sigel H., Stability of metal ion complexes formed with methyl phosphate and hydrogen phosphate, JBIC 1 (1996) 231–238 [CrossRef].
  24. Samson E., Lemaire G., Marchand J., Beaudoin J.J., Modeling chemical activity effects in strong ionic solutions, Comput. Mater. Sci. 15 (1999) 285–294 [CrossRef].
  25. Sigel H., Interactions of metal ions with nucleotides and nucleic acids and their constituents, Chem. Soc. Rev. 22 (1993) 255–267 [CrossRef].
  26. Sigel H., Song B., Solution structures of nucleotide-metal ion complexes. Isomeric equilibria, Met. Ions Biol. Syst. 32 (1996) 135–205.
  27. Torikata Y., Ishihara J., Yano T., Protein coagulation through reversible and irreversible bindings of calcium, Agric. Biol. Chem. 51 (1986) 707–714.
  28. Turner B.L., Paphazy M.J., Haygarth P.M., McKelvie I.D., Inositol phosphates in the environment, Philos. Trans. R. Soc. Lond. B Biol. Sci. 357 (2002) 449–469 [CrossRef] [PubMed].
  29. Udabage P., McKinnon I.R., Augustin M.A., Effects of mineral salts and calcium chelating agents on the gelation of renneted skim milk, J. Dairy Sci. 84 (2001) 1569–1575 [PubMed].
  30. Upreti P., Buhlmann P., Metzger L.E., Influence of calcium and phosphorus, lactose and salt-to moisture ratio on cheddar cheese quality: pH buffering properties of cheese, J. Dairy Sci. 89 (2006) 938–950 [PubMed].
  31. Van Wazer J.R., Chemistry, Interscience publishers, New York, USA, 1958.
  32. Vujicic I., Batra S.C., Deman J.M., Interaction of alkaline earth metal ions with polyphosphates and citrate in the presence and absence of casein, J. Agric. Food Chem. 15 (1967) 403–407 [CrossRef].
  33. Vujicic I., deMan J.M., Woodrow I.L., Interaction of polyphosphates and citrate with skimmilk proteins, Can. Inst. Food Sci. Technol. J. 1 (1968) 17–21.
  34. Walstra P., Wouters J.T.M., Geurts T.J., Dairy Science and Technology, CRC press, Boc Raton, USA, 2006.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.