Free Access
Issue
Dairy Sci. Technol.
Volume 89, Number 1, January-February 2009
Page(s) 43 - 67
DOI https://doi.org/10.1051/dst:2008027
Published online 17 December 2008
References of  Dairy Sci. Technol. 89 (2009) 43–67
  1. British Pharmacopoeia (BP), Medicinal and pharmaceutical substances, The Stationery Office, Great Britain, 1, 2001, pp. 23–20 to 23–23.
  2. Brown H.T., Pickering S.U., Thermo-chemistry of chemistry hydrolysis, J. Chem. Soc. 71 (1897) 783–795.
  3. Buckton G., Yonemochi E., Hammond J., Moffat A., The use of near infra-red spectroscopy to detect changes in the form of amorphous and crystalline lactose, Int. J. Pharm. 168 (1998) 231–241 [CrossRef].
  4. Elmonsef Omar A.M., Roos Y.H., Glass transition and crystallization behaviour of freeze-dried lactose-salt mixtures, Lebensm. Wiss. Technol. 40 (2007) 536–543.
  5. FAO/WHO, Methods of analysis for sugars, in: Codex Alimentarius, CAC/RM 1/8-1969, FAO/WHO, Rome, 1969, p. 9.
  6. FAO/WHO, Codex standard for sugars, in: Codex Alimentarius, Codex STAN 212-1999 (Amd. 1-2001), FAO/WHO, Rome, 2001, pp. 1–5.
  7. Fernandez-Martin F., Morais F., Olano A., Thermal behaviour of lactose, in: Linko P., Malkki Y., Olkku J., Larinkari J. (Eds.), Food Process Engineering, volume 1: Food Processing Systems, Applied Science Publishers, Barking, Essex, UK, 1980, pp. 523–529.
  8. Figura L.O., The physical modification of lactose and its thermoanalytical identification, Thermochim. Acta 222 (1993) 187–194 [CrossRef].
  9. Figura L.O., Epple M., Anhydrous $\alpha$-lactose: a study with DSC and TXRD, J. Therm. Anal. 44 (1995) 45–53 [CrossRef].
  10. Findlay A., Thermochemistry, in: Findlay A. (Ed.), Physical Chemistry, Longman, London, UK, 1954, pp. 186–198.
  11. Fitzpatrick J.J., Hodnett M., Twomey M., Cerqueira P.S.M., O'Flynn J., Roos Y.H., Glass transition and the flowability and caking of powders containing amorphous lactose, Powder Tech. 178 (2007) 119–128 [CrossRef].
  12. Fix I., Steffens K.J., Quantifying low amorphous or crystalline amounts of alpha-lactose-monohydrate using X-ray powder diffraction, near-infrared spectroscopy, and differential scanning calorimetry, Drug Dev. Ind. Pharm. 30 (2004) 513–523 [CrossRef] [PubMed].
  13. Gabbott P., Clarke P., Mann T., Royall P., Shergill S., A high-sensitivity, high-speed DSC technique: Measurement of amorphous lactose, Am. Lab. 35 (2003) 17–18, 20, 22.
  14. Gombas A., Szabo-Revesz P., Kata M., Regdon Jr G., Eros I., Quantitative determination of crystallinity of $\alpha$-lactose monohydrate by DSC, J. Therm. Anal. Calorim. 68 (2002) 503–510 [CrossRef].
  15. Gustafsson C., Lennholm H., Iversen T., Nystrom C., Comparison of solid-state NMR and isothermal microcalorimetry in the assessment of the amorphous component of lactose, Int. J. Pharm. 174 (1998) 243–252 [CrossRef].
  16. Harjunen P., Lehton V.P., Koivisto M., Levonen E., Paronen P., Jarvinen K., Determination of amorphous content of lactose samples by solution calorimetry, Drug Dev. Ind. Pharm. 30 (2004) 809–815 [CrossRef] [PubMed].
  17. Hogan S.E., Buckton G., The quantification of small degrees of disorder in lactose using solution calorimetry, Int. J. Pharm. 207 (2000) 57–64 [CrossRef] [PubMed].
  18. Hogan S.E., Buckton G., The application of near infrared spectroscopy and dynamic vapor sorption to quantify low amorphous contents of crystalline lactose, Pharm. Res. 18 (2001) 112–116 [CrossRef] [PubMed].
  19. Holsinger V.H., Lactose, in: Wong N.P., Jenness R., Keeney M., Marth E.H. (Eds.), Fundamentals of Dairy Chemistry, Van Nostrand Reinhold, New York, USA, 1988, pp. 279–342.
  20. Hudson C.S., Brown F.C., The heats of solution of the three forms of milk-sugar, J. Am. Chem. Soc. 30 (1908) 960–971 [CrossRef].
  21. International Dairy Federation (IDF), Dried milk and dried cream: determination of water content: Standard 26A, International Dairy Federation, Belgium, 1993.
  22. Itoh T., Satoh M., Adachi S., Differential thermal analysis of $\alpha$-lactose hydrate, J. Dairy Sci. 60 (1977) 1230–1235.
  23. Jones J.M., McLachlan T., The determination of moisture by the volatile solvent method, Analyst 52 (1927) 383–387 [CrossRef].
  24. Jorissen W.J., Van de Stadt E., Ueber die Bindungswärme des Krystallwassers von organischen Verbindungen, J. Prakt. Chem. 51 (1894) 102–106 [CrossRef].
  25. Kirk J.H., Dann S.E., Blatchford C.G., Lactose: A definitive guide to polymorph determination, Int. J. Pharm. 334 (2007) 103–114 [CrossRef] [PubMed].
  26. Lide D.R., CRC Handbook of Chemistry and Physics, CRC Press, USA, 2004.
  27. Listiohadi Y.D., Modification of sugars by extrusion, MSc Honours Thesis, University of Western Sydney Hawkesbury, Richmond, NSW, Australia, 2000.
  28. Listiohadi Y.D., The caking of lactose, Ph.D. Thesis, University of Western Sydney, Richmond, NSW, Australia, 2004.
  29. Listiohadi Y.D., Hourigan J.A., Sleigh R.W., Steele R.J., Properties of lactose and its caking behaviour, Aust. J. Dairy Technol. 60 (2005) 33–52.
  30. Lloyd R.J., Chen X.D., Hargreaves J.B., Glass transition and caking of spray-dried lactose, Int. J. Food Sci. Technol. 31 (1996) 305–311 [CrossRef].
  31. Magie W.F., The specific heats of certain organic solids, Phys. Rev. 16 (1903) 381–382.
  32. Magie and Hudson, Princeton Univ. Bull. April (1902). As cited by Hudson and Brown (1908), see above [20].
  33. Nakanishi K., Infrared Absorption Spectroscopy, Nankoudou Press, Tokyo, 1960.
  34. Newell H.E., Buckton G., Butler D.A., Thielmann F., Williams D.R., The use of inverse phase gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose, Pharm. Res. 18 (2001) 662–666 [CrossRef] [PubMed].
  35. Norris K.P., Greenstreet J.E.S., Infra-red absorption spectra of casein and lactose, Nature 181 (1958) 265–266 [PubMed].
  36. Roetman K., Methods for the quantitative determination of crystalline lactose in milk products, Neth. Milk Dairy J. 35 (1981) 1–52.
  37. Roetman K., Buma T.J., Temperature dependence of the equilibrium $\beta$/$\alpha$ ratio of lactose in aqueous solution, Neth. Milk Dairy J. 28 (1974) 155–165.
  38. Roetman K., Van Schaik M., The $\beta$/$\alpha$ ratio of lactose in the amorphous state, Neth. Milk Dairy J. 29 (1975) 225–237.
  39. Roos Y., Karel M., Crystallization of amorphous lactose, J. Food Sci. 57 (1992) 775–777 [CrossRef].
  40. Roos Y., Karel M., Effects of glass transitions on dynamic phenomena in sugar containing food systems, in: Blanshard J.M.V., Lillford P.J. (Eds.), The Glassy State in Foods, Nottingham University Press, Leicestershire, UK, 1993, pp. 207–222.
  41. Saunders M., Podluii K., Shergill S., Buckton G., Royall P., The potential of high speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples, Int. J. Pharm. 274 (2004) 35–40 [CrossRef] [PubMed].
  42. Savolainen M., Jouppila K., Pajamo O., Christiansen L., Strachan C., Karjalainen M., Rantanen J., Determination of amorphous content in the pharmaceutical process environment, J. Pharm. Pharmacol. 59 (2007) 161–170 [PubMed].
  43. Schuck P., Dolivet A., Lactose crystallization: Determination of $\alpha$-lactose monohydrate in spray-dried dairy products, Lait 82 (2002) 413–421 [CrossRef].
  44. United States Pharmacopeia (USP), The National Formulary: USP 23, NF 18 United States Pharmacopeial Convention, Washington, 1995, pp. 2257–2258.
  45. Van Leverink J., Extrusion process for the preparation of anhydrous stable lactose, U.S. Patent No. 4 280 997, 1981.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.